ViT再升级!9个视觉transformer最新改进方案让性能飞跃

通过优化ViT结构和训练策略,我们可以提高模型的性能和计算效率,增强模型对局部信息的捕捉能力。同时解决一些原有模型存在的问题。

比如原始的ViT模型在处理高分辨率图像时,由于自注意力机制的计算复杂度与序列长度相关,会导致较高的计算成本。通过对ViT进行改进,我们就可以减少参数量和计算量。

这类改进不仅能够更高效地处理图像数据,同时还能增强ViT在各种视觉任务中的适用性。因此,为了让模型更加高效和适用于实际应用,研究者们已经提出不少值得学习的ViT改进方案。比如基于全新残差注意力机制的ReViT。

本文介绍9种最新的ViT改进方案,配套模型与开源代码都整理了,希望可以为同学们提供新的思路和方法。

论文和代码需要的同学看文末

ReViT

ReViT: Enhancing Vision Transformers with Attention Residual Connections for Visual Recognition

方法:论文引入了一种创新的残余注意力视觉变换器(ReViT)网络,通过将残余注意力学习整合到视觉变换器(ViT)架构中,来增强对视觉特征的提取。该方法有效地传输和累积来自查询和键的注意力信息,跨越连续的多头自注意力(MHSA)层。这种残余连接防止了低级视觉特征的减少。此外,它通过减缓注意力机制的全球化,在学习新特征时赋予模型利用先前提取的特征的能力。

创新点:

  • 基于残差注意力模块的ViT架构&

### 回答1: Vision Transformer是一种新型的图像分类模型,它使用了自注意力机制来处理图像特征,相比传统的卷积神经网络,具有更好的可扩展性和泛化能力。近期的研究表明,通过改进Vision Transformer的结构和训练方法,可以进一步提高其性能,例如使用更大的模型、引入多尺度特征、增加数据增强等方式。这些改进使得Vision Transformer在图像分类、目标检测等任务中取得了更好的效果,成为了当前研究的热点之一。 ### 回答2: 近年来,Transformer模型成为了自然语言处理中最流行的模型之一。它的创新之处在于,它将每一个句子中的每一个单词都视为一个序列,这意味着单词之间的顺序和关系可以更好地被模型理解。最初,Transformer模型被用来进行自然语言处理中的任务,比如语言翻译。但是,最近,它被用来解决各种机器学习问题。 然而,当我们将Transformer扩展到处理更大的数据集时,它的计算成本也随之增加。因此,有些研究人员提出了一种新的Transformer变体,即Vision TransformerViT)。它是一种基于Transformer模型的视觉任务模型,其主要目标是改进图像分类和对象检测等视觉任务的性能ViT的主要创新之处在于,它使用了一个类似于将图像拆成打大小块的方式来处理图像。这使得模型能够更好地处理大型输入。ViT的输入是一张图像,将其分成若干个大小相同的图像块,每个块的大小和位置都是相同的,然后依次输入到Transformer模型中。 另一个改进是,ViT使用了卷积神经网络和Transformer相结合的方式,来更好地利用卷积神经网络对图像区域的局部特征提取和Transformer对全局特征抽取的优势。这种结合方式使得ViT在训练速度和精度上都有了很大的提升。 总的来说,ViT是一种非常有前途的模型,它为计算机视觉领域的发展提供了更加广阔的空间。ViT不仅在训练过程中表现良好,而且在图像分类和对象检测等大规模实际应用中也有很好的表现。然而,尽管ViT在现有的视觉任务中表现良好,但仍需更多的研究来改进性能和稳定性。 ### 回答3: 随着人工智能的发展,计算机视觉逐渐成为研究热点。在计算机视觉中,图像分类是最重要的任务之一,因为它可以用于图像检索,目标检测,人脸识别等多个应用领域。而图像分类主要通过深度卷积神经网络实现,但在长宽比例较大的图像中,其性能不足,因此需要更加高效的算法。 近年来,Vision Transformer模型提出了一种新的方法来处理这个问题。Vision Transformer是基于Transformer架构设计的模型,这样做的好处是可以处理任意尺寸和长宽比例的图像,同时其可解释性比传统的卷积神经网络要更高。不过,Vision Transformer也存在一些问题,如需要大量的参数,训练时间长,且在处理小尺寸图像方面性能不如现有的CNN模型等。 针对上述问题,研究者在Vision Transformer模型的基础上进行了进一步改进。以下是一些主要的改进点: 1. 改进注意力机制:主要包括Local Patch Attention和Global Context Attention。前者将每个像素点附近的局部图像块作为输入,后者获取全局特征,可以在不降低性能的情况下减少模型参数。 2. 增加Dropout:在数据集比较小的情况下,模型容易出现过拟合。因此,为了避免过拟合,可以增加随机丢弃某些神经元的Dropout操作。 3. 使用预训练权重:在大规模图像数据集上预训练模型可以加快模型收敛速度,提高准确率。 4. 增加非线性特征映射:卷积神经网络中常用的卷积层会通过非线性激活函数对图像进行特征提取,这一步操作类似于图像的特征映射。类似的,在Vision Transformer模型中也可以使用非线性特征映射来提高图像分类的准确率。 总体看来,这些方法都可以对Vision Transformer模型进行一些改进,提高其性能。其中一些方法是从传统的卷积神经网络中借鉴而来的,可以在现有深度学习框架中实现。但是,因为Vision Transformer是一种全新的模型,其特征映射和注意力机制等方法也需要不断探索与改进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值