涨点&发论文神器:即插即用多尺度融合模块!

在CV任务中,图像中的目标往往以不同的尺寸和形态出现,传统的单尺度处理方法难以同时捕捉这些目标的细节信息。

为解决这个问题,研究者们提出了即插即用多尺度融合模块:通过提取并融合不同尺度的特征,在保持高性能的同时,加强了模型对复杂场景的理解和处理能力。

另外,这种模块因为内部的优化设计,能无缝集成到现有深度学习模型中,无需修改原始模型,非常适合我们快速验证和应用,改善我们的模型性能

为方便各位理解和使用,加速论文进度,我这次挑选了10个即插即用多尺度融合模块,基本都是最新的,已经开源的代码也附上了。

论文原文+开源代码需要的同学看文末

Semantic-aligned matching for enhanced detr convergence and multi-scale feature fusion

方法:本文提出了SAM-DETR++来加速DETR的收敛速度。SAM-DETR++模型实现了一种即插即用的多尺度特征融合方法。这种方法通过在DETR的框架内引入一个额外的模块来实现,该模块能够将不同尺度的特征有效地结合起来,以提高对象检测的性能。

创新点:

  • 提出了SAM-DETR++,通过一个即插即用的模块加速了DETR的收敛,实现了目标查询和编码图像特征之间的语义对齐匹配。

  • 提出了显式搜索目标代表性关键点并利用它们的特征进行语义对齐匹配的方法,进一步增强了引入的语义对齐匹配机制的表示能力。

  • 将语义对齐匹配机制扩展到多尺度特征融合中,以粗到精的方式自适应地表示不同尺度的目标,从而实现更快的收敛速度和更优的检测性能。

Centralized Feature Pyramid for Object Detection

方法:论文介绍了目标检测中的一个新方法,称为CFP。该方法基于全局显式的中心特征调节,通过引入轻量级的多层感知机(MLP)来捕捉全局的长程依赖关系,并使用可学习的视觉中心来捕捉输入图像的局部角落区域。与现有方法相比,CFP不仅能够捕捉全局长距离依赖关系,还能够高效地获取全面而有区分性的特征表示。

创新点:

  • 提出了一种基于全局显式中心化特征调节的CFP目标检测方法,该方法能够捕捉全局长距离依赖关系,并有效地获取全面而有区分性的特征表示。

  • 提出了一种空间显式的视觉中心方案,利用轻量级MLP捕捉全局长距离依赖关系,并使用可并行学习的视觉中心来捕捉输入图像的局部角区域。

  • 提出了一种自顶向下的特征金字塔的GCR方法,利用从最深层内部特征获得的显式视觉中心信息来调节所有前端浅层特征。

Lite DETR : An Interleaved Multi-Scale Encoder for Efficient DETR

方法:主要讨论了一种高效的多尺度特征融合方法,用于改进基于Transformer的对象检测模型(如DETR)。作者将特征分为高级和低级特征,并通过交叉尺度融合的方式以不同频率更新特征,以实现性能和效率的平衡。此外,还引入了关键词感知的可变形注意力机制,提高了对小目标的检测性能。

创新点:

  • Lite DETR:一种高效的DETR框架,通过交错更新多尺度特征并减少查询令牌,大幅降低计算成本同时保持高性能。

  • KDA(键感知可变形注意力):优化特征更新过程,通过缩放点积注意力提高多尺度特征融合的可靠性,增强小物体检测能力。

  • Lite DETR显著提升效率:计算成本降低60%,性能几乎无损(保持99%),易于集成到其他检测模型中。

MSF-Net: A Lightweight Multi-Scale Feature Fusion Network for Skin Lesion Segmentation

方法:论文提出了一个用于皮肤病变分割的轻量级多尺度特征融合网络(MSF-Net)。这个网络基于综合注意力卷积神经网络(CA-Net),并通过引入三个核心模块——S-Conv块、多尺度扩张卷积模块(MDC)和多尺度特征融合模块(MFF)——来实现即插即用(plug-and-play)的多尺度特征融合。

创新点:

  • MSF-Net引入了空间注意机制来调整图像像素的权重,专注于关键信息并抑制无关信息。

  • MDC模块通过并行的四个不同尺度的扩张卷积提取不同尺度的相关信息,并根据不同尺度的输入信息自适应调整特征图的感知域大小。

  • MFF模块用于融合不同尺度的相关信息,通过1×1卷积降低通道数,进一步提取特征。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“即插多尺度”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

### 多尺度特征融合模块的分割实现方法 多尺度特征融合是一种广泛应用于计算机视觉领域的方法,特别是在图像分割任务中。以下是关于如何实现多尺度特征融合模块的具体方法: #### 1. **轻量级多尺度特征融合网络 (MSF-Net)** 论文提出的 MSF-Net 是一种专门设计用于皮肤病变分割的任务框架[^1]。它通过引入 S-Conv 块、多尺度扩张卷积模块(MDC)以及多尺度特征融合模块(MFF),实现了高效的特征提取和融合。 - **S-Conv 块**: 这一模块主要用于增强局部细节捕捉能力,适用于处理高分辨率输入数据中的细微变化。 - **多尺度扩张卷积模块 (MDC)**: MDC 利用了不同膨胀率的空间金字塔池化技术,能够捕获多种感受野下的上下文信息。 - **多尺度特征融合模块 (MFF)**: 将低层特征图中的细粒度信息与高层语义信息相结合,提升模型的整体表现。 具体实现可以参考如下伪代码: ```python import torch.nn as nn class MultiScaleFeatureFusion(nn.Module): def __init__(self, channels_list): super(MultiScaleFeatureFusion, self).__init__() self.conv_low = nn.Conv2d(channels_list[0], channels_list[-1], kernel_size=1) self.conv_high = nn.Conv2d(channels_list[-1], channels_list[-1], kernel_size=1) def forward(self, low_level_features, high_level_features): resized_low = nn.functional.interpolate(low_level_features, size=high_level_features.shape[2:], mode='bilinear') fused_feature = self.conv_low(resized_low) + self.conv_high(high_level_features) return fused_feature ``` --- #### 2. **YOLOv8 的 CCFM 模块** CCFM(Cross-Scale Feature Fusion Module)是 YOLOv8 中提出的一种轻量化跨尺度特征融合方案[^2]。其核心在于结合通道注意力机制和空间注意力机制,有效减少参数数量的同时提高特征表达能力。 - **通道注意力模块**: 学习各通道之间的权重分布,突出重要特征并抑制冗余信息。 - **空间注意力模块**: 对于不同的空间位置分配不同程度的关注力,进一步优化全局感知效果。 以下是其实现的一个简化版本: ```python class ChannelAttentionModule(nn.Module): def __init__(self, channel_num, reduction_ratio=16): super(ChannelAttentionModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel_num, channel_num // reduction_ratio), nn.ReLU(), nn.Linear(channel_num // reduction_ratio, channel_num), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SpatialAttentionModule(nn.Module): def __init__(self): super(SpatialAttentionModule, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) out = torch.cat([avg_out, max_out], dim=1) out = self.conv(out) return x * self.sigmoid(out) class CrossScaleFeatureFusionModule(nn.Module): def __init__(self, channel_num): super(CrossScaleFeatureFusionModule, self).__init__() self.channel_attention = ChannelAttentionModule(channel_num) self.spatial_attention = SpatialAttentionModule() def forward(self, features): attended_channel = self.channel_attention(features) final_output = self.spatial_attention(attended_channel) return final_output ``` --- #### 3. **基于矩阵乘法的多尺度特征融合** 另一种常见的多尺度特征融合方式依赖于矩阵运算来衡量像素间的关联程度,并将底层详尽的信息融入最终输出之中[^3]。这种方法通常会用在深层神经网络的最后一两层间,以改善特定目标边界区域的表现。 下面是一个简单的例子展示该过程的核心逻辑: ```python def matrix_based_fusion(feature_map_1, feature_map_2): correlation_matrix = torch.matmul(feature_map_1.permute(0, 2, 3, 1), feature_map_2.permute(0, 2, 3, 1)) normalized_corr = nn.functional.softmax(correlation_matrix, dim=-1) enhanced_feature = torch.einsum('ijkl,jklm->ijkm', normalized_corr, feature_map_2.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return enhanced_feature ``` 上述函数接受两个特征映射作为输入,计算它们之间的相似性得分矩阵,并据此调整第二个特征映射的内容结构。 --- #### 总结 无论是采用复杂的架构如 MSF-Net 或者更简洁的设计像 CCFM,亦或是基础版的矩阵操作形式,这些策略都旨在解决单一尺度下难以兼顾全局背景与局部纹理的问题。实际开过程中可以根据硬件资源约束及应用场景需求灵活选用合适的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值