网上冲浪的时候看见有同学靠改YOLOv8发了俩ccf-c...突然心动...不过大家懂的都懂,现在对YOLO的传统研究已经是卷生卷死,如果还想要做创新,或许可以考虑围绕模型改进这方面,尤其是使用多尺度特征融合。
这是因为,YOLO系列算法普遍存在多尺度目标处理能力不足的问题,通过使用多尺度特征融合,整合不同空间尺度的特征信息,就能让算法更好地适应不同尺度的目标,这样无论大小都能实现精准检测,问题自然就迎刃而解。
更牛的是,多尺度特征融合在保持YOLO算法高效实时的同时,还优化了计算资源和存储开销,特别适用于各类多样化应用场景,可以说创新空间很大了。
为了方便有论文需求的同学,我这次整理了10篇YOLO+多尺度特征融合最新论文,开源代码已附,大家需要参考的可以直接拿来看~
全部论文+开源代码需要的同学看文末
Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection
方法:论文提出了一个新的模型MAF-YOLO,它通过引入多分支辅助FPN(MAFPN)和重新参数化异构高效层聚合网络(RepHELAN)等组件,解决了传统YOLO中PAFPN无法高效融合多尺度特征的问题,通过动态调整卷积核以扩展感受野,显著提高了小目标检测能力和整