大模型的实践应用7-阿里的多版本通义千问Qwen大模型的快速应用与部署

本文介绍了阿里云的多版本通义千问Qwen模型,包括其更新内容、性能表现及快速应用与部署方法。Qwen模型经过多次迭代,提升了训练数据量和上下文长度,表现出色于多个基准数据集,适用于自然语言理解和问题解决等任务。通过简单的代码示例展示了模型的快速应用,支持批量推理和量化模型,降低了推理成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用7-阿里的多版本通义千问Qwen大模型的快速应用与部署。阿里云开源了Qwen系列模型,即Qwen-7B和Qwen-14B,以及Qwen的聊天模型,即Qwen-7B-Chat和Qwen-14B-Chat。通义千问模型针对多达 3 万亿个 token 的多语言数据进行了稳定的预训练,覆盖领域、语言等,能够实现有竞争力的基准数据集上的性能。此外,阿里还基于SFT和RLHF(尚未发布)的符合人类偏好的聊天模型,能够聊天、创建内容、提取信息、解决数学问题等,并且能够使用工具,扮演代理,甚至扮演代码解释器等。
在这里插入图片描述

一、阿里大模型(通义千问)更新列表:

2023.8.3 我在 ModelScope 和 Hugging Face 上发布了Qwen-7B和Qwen-7B-Chat 。阿里还提供了有关模型的更多详细信息的技术备忘录,包括训练细节和模型性能。

2023.8.21 阿里发布了 Qwen-7B-Chat 的 Int4 量化模型Qwen-7B-Chat-Int4,该模型需要较低的内存成本,但可以提高推理速度。此外,基准评估没有明显的性能下降

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值