大家好,我是微学AI,今天给大家介绍一下AI高中数学教学视频生成技术:利用通义千问、MathGPT、视频多模态大模型,语音大模型,将4个模型融合 ,生成高中数学教学视频,并给出实施方案。本文利用专家模型+反思+总结的模式提升大模型返回结合,文本生成PPT模型,驱动PPT生成动画视频,并结合文稿生成语音,最后合并生成完整的高中数学教学视频。
文章目录
一、项目概述
融合模型介绍
在本项目的融合模型架构中,我们集成了四个核心组件:
-
通义千问大模型 :负责生成高质量的数学讲解内容,其突出优势在于能够处理长达100万个tokens的上下文,为创造连贯且深入的教学内容奠定了基础。
-
MathGPT :专门用于解决数学问题,在多个数学评测集合中表现优异,能够提供清晰、专业的解题步骤。
-
视频生成多模态大模型 :负责将抽象的数学概念转化为直观的视觉呈现,通过融合视频、文本和音频等多种模态信息,创造出丰富多样的教学素材。
-
语音生成大模型 :能够生成高度拟人化的语音,支持灵活调整语速、语气和情感,为教学视频增添生动的讲解效果。
这四个模型的协同工作,旨在创造一种全新的、沉浸式的数学学习体验,使学生能够更轻松地理解和掌握复杂的数学概念。
教学视频目标
在探讨高中数学教学视频的具体目标之前,我们需要明确这一创新教学方式的核心价值。我们的教学视频旨在 全面提升学生的数学素养 ,不仅关注知识传授,更注重培养学生的综合能力。具体而言,我们将聚焦于以下几个方面:
- 深化理解抽象概念 :通过生动的视觉呈现,帮助学生突破理解障碍。
- 规范解题思路 :展示典型例题的分析和解答过程,培养学生正确的解题习惯。
- 激发学习兴趣 :结合多媒体元素,提高学生的学习积极性和主动性。
- 培养自主学习能力 :为不同学习需求的学生提供额外资源,促进个性化学习。
通过这些努力,我们期望显著提高教学质量,使学生不仅能掌握数学知识,还能培养良好的数学思维和学习习惯。
二、模型融合方案
数学内容生成
在数学内容生成的过程中,通义千问和MathGPT这两个模型扮演着关键角色。它们通过巧妙的协作,为我们提供了高质量的数学讲解内容。
通义千问作为一个强大的语言模型,能够生成连贯且深入的数学讲解内容。其突出的优势在于能够处理长达100万个tokens的上下文,这意味着它可以在生成内容时保持高度的连贯性和深度。这种能力使得通义千问特别适合生成复杂的数学概念解释和详细的解题过程。
MathGPT则专注于解决数学问题,在多个数学评测集合中表现优异。它能够提供清晰、专业的解题步骤,这对于生成高质量的数学教学内容至关重要。MathGPT的优势在于其多步逻辑推理能力,能够处理复杂的数学问题,包括数学竞赛级别的题目。
专家模型+反思+总结的模式
为了充分利用这两个模型的优势,我设计一个协同工作的流程:
- 内容规划 :确定需要讲解的数学概念或问题类型。
- 通义千问生成 :使用通义千问生成初始的数学内容框架和概念解释。
- MathGPT补充 :针对具体问题,使用MathGPT生成详细的解题步骤和分析。
- 通义千问进行反思 :针对MathGPT补充,对其中的内容进行反思,纠错,弥补不足之处。
- 内容整合与总结 :将通义千问的宏观解释与MathGPT的微观分析相结合,形成完整的数学讲解内容。
- 质量评估 :评估生成内容的准确性和教学效果,必要时进行修正和优化。
以下利用专家模型+反思+总结的模式,大大提升大模型返回的结果:
例如直接问大模的时候,有这样一个错误,9.11>9.8, 这个是大模型经常犯的错误。所以大模型对数值计算有个天然的弱点,我们利用专家模型+反思+总结的模式提升他的数学能力。
实现如下,反思模型可以准确回答这个问题:
实例:利用MathGPT+千问+反思模型生成教案
1.采用MathGPT+通义千问图像模板生成PPT的应用,利用文本生成md格式的思维导图样例:
2.采用MathGPT+通义千问生成教材相关总结的知识导图,辅助教师教学:
3.采用MathGPT+通义千问生成几何图形,并生成相关专题描述:
视频画面生成
在数学教学视频的制作过程中,视频画面的生成是一个至关重要的环节。为了将抽象的数学概念转化为直观易懂的视觉元素,我们采用了先进的视频生成多模态大模型。这个模型的核心架构包含三个关键组件:视觉编码器、语言模型和投影仪,它们协同工作,实现了视觉和文本模态的有效融合。
视频生成多模态大模型的一个重要特性是其 动态分辨率支持 。这项创新允许模型处理任意分辨率的图像,并根据需要将其转换为不同数量的视觉标记。具体来说,模型通过以下步骤处理图像:
动态分辨率支持
移除绝对位置嵌入:传统的卷积神经网络(CNN)通常使用绝对位置嵌入来表示图像中的位置信息。然而,这种方法在处理不同分辨率的图像时存在局限性。因此,模型移除了绝对位置嵌入,转而采用更灵活的方法。
2D-RoPE(旋转位置嵌入):2D-RoPE是一种基于旋转矩阵的位置嵌入方法,能够捕捉图像的二维位置信息。具体来说,对于每个像素 ( i , j ) (i, j) (i,j),其位置嵌入 E ( i , j ) E(i, j) E(i,j) 可以表示为:
E ( i , j ) = ( cos ( θ i ) − sin ( θ j ) sin ( θ i ) cos ( θ j ) ) E(i, j) = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_j) \ \sin(\theta_i) & \cos(\theta_j) \end{pmatrix} E(i,j)=(cos(θi)−sin(θj) sin(θi)cos(θj))
其中, θ i \theta_i θi 和 θ j \theta_j θj 分别是像素在水平和垂直方向上的位置参数。
压缩视觉标记:为了减少计算复杂度,模型将相邻的视觉标记压缩为一个标记。假设原始图像被划分为 N × N N \times N N×N 的网格,
每个网格内的像素被压缩为一个标记。压缩后的标记数量为:
M = ( W N ) × ( H N ) M = \left(\frac{W}{N}\right) \times \left(\frac{H}{N}\right) M=(N