SLAM——入门到放弃:g2o定义顶点

https://mp.weixin.qq.com/s/12V8iloLwVRPahE36OIPcw

g2o定义顶点

在这里插入图片描述

g2o的顶点(Vertex) 参数

在这里插入图片描述

  • D是int 类型的,表示vertex的最小维度,比如3D空间中旋转是3维的,那么这里 D = 3
  • T是待估计vertex的数据类型,比如用四元数表达三维旋转的话,T就是Quaternion 类型

细看一下D, T,D 在源码里面是这样注释的

static const int Dimension = D; ///< dimension of the estimate (minimal) in the manifold space

D并非是顶点(更确切的说是状态变量)的维度,而是其在流形空间(manifold)的最小表示

typedef T EstimateType;
EstimateType _estimate;

T就是顶点(状态变量)的类型

定义顶点

顶点的基本类型是 BaseVertex,g2o本身内部定义了一些常用的顶点类型

VertexSE2 : public BaseVertex<3, SE2>  //2D pose Vertex, (x,y,theta)
VertexSE3 : public BaseVertex<6, Isometry3>  //6d vector (x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion)
VertexPointXY : public BaseVertex<2, Vector2>
VertexPointXYZ : public BaseVertex<3, Vector3>
VertexSBAPointXYZ : public BaseVertex<3, Vector3>

// SE3 Vertex parameterized internally with a transformation matrix and externally with its exponential map
VertexSE3Expmap : public BaseVertex<6, SE3Quat>

// SBACam Vertex, (x,y,z,qw,qx,qy,qz),(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
// qw is assumed to be positive, otherwise there is an ambiguity in qx,qy,qz as a rotation
VertexCam : public BaseVertex<6, SBACam>

// Sim3 Vertex, (x,y,z,qw,qx,qy,qz),7d vector,(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
VertexSim3Expmap : public BaseVertex<7, Sim3>

可以直接用这些,但是有时候需要的顶点类型这里面没有,就得自己定义了。

重新定义顶点一般需要考虑重写如下函数:

virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
virtual void oplusImpl(const number_t* update);
virtual void setToOriginImpl();
  • read,write:分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以
  • setToOriginImpl:顶点重置函数,设定被优化变量的原始值
  • oplusImpl:顶点更新函数。非常重要的一个函数,主要用于优化过程中增量△x 的计算。我们根据增量方程计算出增量之后,就是通过这个函数对估计值进行调整的

自己定义 顶点一般是下面的格式:

  class myVertex: public g2::BaseVertex<Dim, Type>
  {
      public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW

      myVertex(){}

      virtual void read(std::istream& is) {}
      virtual void write(std::ostream& os) const {}

      virtual void setOriginImpl()
      {
          _estimate = Type();
      }
      virtual void oplusImpl(const double* update) override
      {
          _estimate += /*update*/;
      }
  }

eg1:
十四讲中的曲线拟合

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    virtual void setToOriginImpl() // 重置
    {
        _estimate << 0,0,0;
    }

    virtual void oplusImpl( const double* update ) // 更新
    {
        _estimate += Eigen::Vector3d(update);
    }
    // 存盘和读盘:留空
    virtual bool read( istream& in ) {}
    virtual bool write( ostream& out ) const {}
};

顶点类型是Eigen::Vector3d,属于向量,是可以通过加法来更新的,有些例子就不行,比如下面这个复杂点例子:李代数表示位姿VertexSE3Expmap

eg2:
g2o/types/sba/types_six_dof_expmap.h

g2o/types/sba/types_six_dof_expmap.h

/**

 \* \brief SE3 Vertex parameterized internally with a transformation matrix

 and externally with its exponential map

 */

class G2O_TYPES_SBA_API VertexSE3Expmap : public BaseVertex<6, SE3Quat>{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  VertexSE3Expmap();
  bool read(std::istream& is);
  bool write(std::ostream& os) const;
  virtual void setToOriginImpl() {
    _estimate = SE3Quat();
  }

  virtual void oplusImpl(const number_t* update_)  {
    Eigen::Map<const Vector6> update(update_);
    setEstimate(SE3Quat::exp(update)*estimate());        //更新方式
  }
};
  • 第一个参数6 表示内部存储的优化变量维度,这是个6维的李代数
  • 第二个参数是优化变量的类型,这里使用了g2o定义的相机位姿类型:SE3Quat。

可以具体查看g2o/types/slam3d/se3quat.h
在这里插入图片描述
它内部使用了四元数表达旋转,然后加上位移来存储位姿,同时支持李代数上的运算,比如对数映射(log函数)、李代数上增量(update函数)等操作

位姿不能直接加,变换矩阵不满足加法封闭

相机位姿顶点类VertexSE3Expmap使用了李代数表示相机位姿,因为旋转矩阵是有约束的矩阵,它必须是正交矩阵且行列式为1。使用它作为优化变量就会引入额外的约束条件,从而增大优化的复杂度。而将旋转矩阵通过李群-李代数之间的转换关系转换为李代数表示,就可以把位姿估计变成无约束的优化问题,求解难度降低。

eg3
三维点的例子,空间点位置 VertexPointXYZ,维度为3,类型是Eigen的Vector

 class G2O_TYPES_SBA_API VertexSBAPointXYZ : public BaseVertex<3, Vector3>
{
  public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW    
    VertexSBAPointXYZ();
    virtual bool read(std::istream& is);
    virtual bool write(std::ostream& os) const;
    virtual void setToOriginImpl() {
      _estimate.fill(0);
    }

    virtual void oplusImpl(const number_t* update)
    {
      Eigen::Map<const Vector3> v(update);
      _estimate += v;
    }
};

向图中添加顶点

  1. 看看第一个曲线拟合的例子,setEstimate(type) 函数来设定初始值;setId(int) 定义节点编号
    // 往图中增加顶点
    CurveFittingVertex* v = new CurveFittingVertex();
    v->setEstimate( Eigen::Vector3d(0,0,0) );
    v->setId(0);
    optimizer.addVertex( v );
  1. 添加 VertexSBAPointXYZ 的例子
    /ch7/pose_estimation_3d2d.cpp
    int index = 1;
    for ( const Point3f p:points_3d )   // landmarks
    {
        g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
        point->setId ( index++ );
        point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
        point->setMarginalized ( true ); 
        optimizer.addVertex ( point );
    }

实践

题目:给定一组世界坐标系下的3D点(p3d.txt)以及它在相机中对应的坐标(p2d.txt),以及相机的内参矩阵。
使用bundle adjustment 方法(g2o库实现)来估计相机的位姿T。初始位姿T为单位矩阵。

#include <vector>
#include <fstream>
#include <iostream>
#include <opencv2/core/core.hpp>


#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Dense>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/types/sba/types_six_dof_expmap.h>

using namespace Eigen;

using namespace cv;
using namespace std;


string p3d_file = "/home/xiaohu/learn_SLAM/zuoye17/练习17-g2o顶点代码框架/p3d.txt";
string p2d_file = "/home/xiaohu/learn_SLAM/zuoye17/练习17-g2o顶点代码框架/p2d.txt";

void bundleAdjustment (
        const vector<Point3f> points_3d,
        const vector<Point2f> points_2d,
        Mat& K );

int main(int argc, char **argv) {


    vector< Point3f > p3d;
    vector< Point2f > p2d;

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    // 导入3D点和对应的2D点

    ifstream fp3d(p3d_file);
    if (!fp3d){
        cout<< "No p3d.text file" << endl;
        return -1;
    }
    else {
        while (!fp3d.eof()){
            double pt3[3] = {0};
            for (auto &p:pt3) {
                fp3d >> p;
            }
            p3d.push_back(Point3f(pt3[0],pt3[1],pt3[2]));
        }
    }
    ifstream fp2d(p2d_file);
    if (!fp2d){
        cout<< "No p2d.text file" << endl;
        return -1;
    }
    else {
        while (!fp2d.eof()){
            double pt2[2] = {0};
            for (auto &p:pt2) {
                fp2d >> p;
            }
            Point2f p2(pt2[0],pt2[1]);
            p2d.push_back(p2);
        }
    }

    assert(p3d.size() == p2d.size());

    int iterations = 100;
    double cost = 0, lastCost = 0;
    int nPoints = p3d.size();
    cout << "points: " << nPoints << endl;

    bundleAdjustment ( p3d, p2d, K );
    return 0;
}

void bundleAdjustment (
        const vector< Point3f > points_3d,
        const vector< Point2f > points_2d,
        Mat& K   )
{
    // creat g2o
    // new g2o version. Ref:https://www.cnblogs.com/xueyuanaichiyu/p/7921382.html

//    typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block;  // pose 维度为 6, landmark 维度为 3
//    // 第1步:创建一个线性求解器LinearSolver
//    Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>();
//
//    // 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
//    Block* solver_ptr = new Block (  std::unique_ptr<Block::LinearSolverType>(linearSolver) );
//
//    // 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
//    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( std::unique_ptr<Block>(solver_ptr) );
//
//    // 第4步:创建稀疏优化器
//    g2o::SparseOptimizer optimizer;
//    optimizer.setAlgorithm ( solver );

    // old g2o version
    typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block;  // pose 维度为 6, landmark 维度为 3
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
    Block* solver_ptr = new Block ( linearSolver );     // 矩阵块求解器
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );

    // 第5步:定义图的顶点和边。并添加到SparseOptimizer中
	
	// ----------------------开始你的代码:设置并添加顶点,初始位姿为单位矩阵
    // vertex
    //李代数位姿
    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
    pose->setId ( 0 );
    pose->setEstimate (g2o::SE3Quat(Eigen::Matrix3d::Identity(),Eigen::Vector3d::Zero()));
    optimizer.addVertex ( pose );

    int index = 1;
    for ( const Point3f p:points_3d )   // landmarks
    {
        //空间点位置
        g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
        point->setId ( index++ );
        point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
        point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容
        optimizer.addVertex ( point );
    }

	// ----------------------结束你的代码

    // 设置相机内参
    g2o::CameraParameters* camera = new g2o::CameraParameters (
            K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0);
    camera->setId ( 0 );
    optimizer.addParameter ( camera );

    // 设置边
    index = 1;
    for ( const Point2f p:points_2d )
    {
        g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
        edge->setId ( index );
        edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) );
        edge->setVertex ( 1, pose );
        edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) );  //设置观测值
        edge->setParameterId ( 0,0 );
        edge->setInformation ( Eigen::Matrix2d::Identity() );
        optimizer.addEdge ( edge );
        index++;
    }

输出:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

令狐少侠、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值