https://mp.weixin.qq.com/s/12V8iloLwVRPahE36OIPcw
g2o定义顶点
g2o的顶点(Vertex) 参数
- D是int 类型的,表示vertex的最小维度,比如3D空间中旋转是3维的,那么这里 D = 3
- T是待估计vertex的数据类型,比如用四元数表达三维旋转的话,T就是Quaternion 类型
细看一下D, T,D 在源码里面是这样注释的
static const int Dimension = D; ///< dimension of the estimate (minimal) in the manifold space
D并非是顶点(更确切的说是状态变量)的维度,而是其在流形空间(manifold)的最小表示
typedef T EstimateType;
EstimateType _estimate;
T就是顶点(状态变量)的类型
定义顶点
顶点的基本类型是 BaseVertex,g2o本身内部定义了一些常用的顶点类型
VertexSE2 : public BaseVertex<3, SE2> //2D pose Vertex, (x,y,theta)
VertexSE3 : public BaseVertex<6, Isometry3> //6d vector (x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion)
VertexPointXY : public BaseVertex<2, Vector2>
VertexPointXYZ : public BaseVertex<3, Vector3>
VertexSBAPointXYZ : public BaseVertex<3, Vector3>
// SE3 Vertex parameterized internally with a transformation matrix and externally with its exponential map
VertexSE3Expmap : public BaseVertex<6, SE3Quat>
// SBACam Vertex, (x,y,z,qw,qx,qy,qz),(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
// qw is assumed to be positive, otherwise there is an ambiguity in qx,qy,qz as a rotation
VertexCam : public BaseVertex<6, SBACam>
// Sim3 Vertex, (x,y,z,qw,qx,qy,qz),7d vector,(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
VertexSim3Expmap : public BaseVertex<7, Sim3>
可以直接用这些,但是有时候需要的顶点类型这里面没有,就得自己定义了。
重新定义顶点一般需要考虑重写如下函数:
virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
virtual void oplusImpl(const number_t* update);
virtual void setToOriginImpl();
- read,write:分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以
- setToOriginImpl:顶点重置函数,设定被优化变量的原始值
- oplusImpl:顶点更新函数。非常重要的一个函数,主要用于优化过程中增量△x 的计算。我们根据增量方程计算出增量之后,就是通过这个函数对估计值进行调整的
自己定义 顶点一般是下面的格式:
class myVertex: public g2::BaseVertex<Dim, Type>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
myVertex(){}
virtual void read(std::istream& is) {}
virtual void write(std::ostream& os) const {}
virtual void setOriginImpl()
{
_estimate = Type();
}
virtual void oplusImpl(const double* update) override
{
_estimate += /*update*/;
}
}
eg1:
十四讲中的曲线拟合
// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
virtual void setToOriginImpl() // 重置
{
_estimate << 0,0,0;
}
virtual void oplusImpl( const double* update ) // 更新
{
_estimate += Eigen::Vector3d(update);
}
// 存盘和读盘:留空
virtual bool read( istream& in ) {}
virtual bool write( ostream& out ) const {}
};
顶点类型是Eigen::Vector3d,属于向量,是可以通过加法来更新的,有些例子就不行,比如下面这个复杂点例子:李代数表示位姿VertexSE3Expmap
eg2:
g2o/types/sba/types_six_dof_expmap.h
g2o/types/sba/types_six_dof_expmap.h
/**
\* \brief SE3 Vertex parameterized internally with a transformation matrix
and externally with its exponential map
*/
class G2O_TYPES_SBA_API VertexSE3Expmap : public BaseVertex<6, SE3Quat>{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
VertexSE3Expmap();
bool read(std::istream& is);
bool write(std::ostream& os) const;
virtual void setToOriginImpl() {
_estimate = SE3Quat();
}
virtual void oplusImpl(const number_t* update_) {
Eigen::Map<const Vector6> update(update_);
setEstimate(SE3Quat::exp(update)*estimate()); //更新方式
}
};
- 第一个参数6 表示内部存储的优化变量维度,这是个6维的李代数
- 第二个参数是优化变量的类型,这里使用了g2o定义的相机位姿类型:SE3Quat。
可以具体查看g2o/types/slam3d/se3quat.h
它内部使用了四元数表达旋转,然后加上位移来存储位姿,同时支持李代数上的运算,比如对数映射(log函数)、李代数上增量(update函数)等操作
位姿不能直接加,变换矩阵不满足加法封闭
相机位姿顶点类VertexSE3Expmap使用了李代数表示相机位姿,因为旋转矩阵是有约束的矩阵,它必须是正交矩阵且行列式为1。使用它作为优化变量就会引入额外的约束条件,从而增大优化的复杂度。而将旋转矩阵通过李群-李代数之间的转换关系转换为李代数表示,就可以把位姿估计变成无约束的优化问题,求解难度降低。
eg3
三维点的例子,空间点位置 VertexPointXYZ,维度为3,类型是Eigen的Vector
class G2O_TYPES_SBA_API VertexSBAPointXYZ : public BaseVertex<3, Vector3>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
VertexSBAPointXYZ();
virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
virtual void setToOriginImpl() {
_estimate.fill(0);
}
virtual void oplusImpl(const number_t* update)
{
Eigen::Map<const Vector3> v(update);
_estimate += v;
}
};
向图中添加顶点
- 看看第一个曲线拟合的例子,setEstimate(type) 函数来设定初始值;setId(int) 定义节点编号
// 往图中增加顶点
CurveFittingVertex* v = new CurveFittingVertex();
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
- 添加 VertexSBAPointXYZ 的例子
/ch7/pose_estimation_3d2d.cpp
int index = 1;
for ( const Point3f p:points_3d ) // landmarks
{
g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
point->setId ( index++ );
point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
point->setMarginalized ( true );
optimizer.addVertex ( point );
}
实践
题目:给定一组世界坐标系下的3D点(p3d.txt)以及它在相机中对应的坐标(p2d.txt),以及相机的内参矩阵。
使用bundle adjustment 方法(g2o库实现)来估计相机的位姿T。初始位姿T为单位矩阵。
#include <vector>
#include <fstream>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Dense>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
using namespace Eigen;
using namespace cv;
using namespace std;
string p3d_file = "/home/xiaohu/learn_SLAM/zuoye17/练习17-g2o顶点代码框架/p3d.txt";
string p2d_file = "/home/xiaohu/learn_SLAM/zuoye17/练习17-g2o顶点代码框架/p2d.txt";
void bundleAdjustment (
const vector<Point3f> points_3d,
const vector<Point2f> points_2d,
Mat& K );
int main(int argc, char **argv) {
vector< Point3f > p3d;
vector< Point2f > p2d;
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
// 导入3D点和对应的2D点
ifstream fp3d(p3d_file);
if (!fp3d){
cout<< "No p3d.text file" << endl;
return -1;
}
else {
while (!fp3d.eof()){
double pt3[3] = {0};
for (auto &p:pt3) {
fp3d >> p;
}
p3d.push_back(Point3f(pt3[0],pt3[1],pt3[2]));
}
}
ifstream fp2d(p2d_file);
if (!fp2d){
cout<< "No p2d.text file" << endl;
return -1;
}
else {
while (!fp2d.eof()){
double pt2[2] = {0};
for (auto &p:pt2) {
fp2d >> p;
}
Point2f p2(pt2[0],pt2[1]);
p2d.push_back(p2);
}
}
assert(p3d.size() == p2d.size());
int iterations = 100;
double cost = 0, lastCost = 0;
int nPoints = p3d.size();
cout << "points: " << nPoints << endl;
bundleAdjustment ( p3d, p2d, K );
return 0;
}
void bundleAdjustment (
const vector< Point3f > points_3d,
const vector< Point2f > points_2d,
Mat& K )
{
// creat g2o
// new g2o version. Ref:https://www.cnblogs.com/xueyuanaichiyu/p/7921382.html
// typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3
// // 第1步:创建一个线性求解器LinearSolver
// Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>();
//
// // 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
// Block* solver_ptr = new Block ( std::unique_ptr<Block::LinearSolverType>(linearSolver) );
//
// // 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
// g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( std::unique_ptr<Block>(solver_ptr) );
//
// // 第4步:创建稀疏优化器
// g2o::SparseOptimizer optimizer;
// optimizer.setAlgorithm ( solver );
// old g2o version
typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3
Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
Block* solver_ptr = new Block ( linearSolver ); // 矩阵块求解器
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );
g2o::SparseOptimizer optimizer;
optimizer.setAlgorithm ( solver );
// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
// ----------------------开始你的代码:设置并添加顶点,初始位姿为单位矩阵
// vertex
//李代数位姿
g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
pose->setId ( 0 );
pose->setEstimate (g2o::SE3Quat(Eigen::Matrix3d::Identity(),Eigen::Vector3d::Zero()));
optimizer.addVertex ( pose );
int index = 1;
for ( const Point3f p:points_3d ) // landmarks
{
//空间点位置
g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
point->setId ( index++ );
point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容
optimizer.addVertex ( point );
}
// ----------------------结束你的代码
// 设置相机内参
g2o::CameraParameters* camera = new g2o::CameraParameters (
K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0);
camera->setId ( 0 );
optimizer.addParameter ( camera );
// 设置边
index = 1;
for ( const Point2f p:points_2d )
{
g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
edge->setId ( index );
edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) );
edge->setVertex ( 1, pose );
edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) ); //设置观测值
edge->setParameterId ( 0,0 );
edge->setInformation ( Eigen::Matrix2d::Identity() );
optimizer.addEdge ( edge );
index++;
}
输出: