激光slam论文汇总

本文概述了从2014年到2021年间在实时激光雷达里程测量和地图构建领域的进展,重点介绍了LOAM、LeGO-LOAM、LIO-SAM和LVI-SAM等方法。这些技术通过优化算法实现了低漂移、低计算复杂度,尤其在结合惯性传感器和视觉信息后,提高了精度和鲁棒性,广泛应用于无人驾驶和机器人导航。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2014

LOAM: Lidar Odometry and Mapping in Real-time

摘要: 我们提出了一种实时的里程测量和映射的方法,使用距离测量从一个2轴激光雷达移动在6-DOF中。这个问题很困难,因为距离测量接收在不同的时间,和运动估计的误差会导致产生的点云的错误配准结果。到目前为止,连贯的3D地图可以通过离线批处理方法建立,通常使用循环闭包来纠正随时间变化的漂移。我们的方法实现了低漂移和低计算复杂度,而不需要高精度的测距或惯性测量。获得这种性能水平的关键思想是将复杂的同时定位和映射问题进行划分,该问题寻求通过两种算法同时优化大量的变量。一种算法在高频率但低保真度下执行测度法来估计激光雷达的速度。另一种算法以较低一个数量级的频率运行,用于点云的精细匹配和配准。这两种算法的结合允许该方法进行实时映射。该方法已通过大量的实验和KITTI测程基准进行了评估。结果表明,该方法可以在现有的离线批处理方法的水平上实现精度。
在这里插入图片描述

2018

LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain

code: https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
摘要: 我们提出了一种轻型的、地面优化的激光雷达测程和映射方法,LeGO-LOAM,用于地面车辆的实时六自由度姿态估计。LeGO-LOAM是轻量级的,因为它可以在低功耗嵌入式系统上实现实时姿态估计。LeGOLOAM是地面优化的,因为它在其分割和优化步骤中利用了地面平面的存在。我们首先应用点云分割来过滤噪声,以及特征提取来获得独特的平面和边缘特征。然后两步黎文堡-马夸特优化方法利用平面和边缘特征来解决连续扫描中六自由度变换的不同分量。我们比较了LeGO-LOAM与最先进的方法LOAM的性能,使用从地面车辆收集的数据集,并表明LeGO-LOAM在降低计算费用的情况下实现了类似或更好的精度。我们还将LeGO-LOAM集成到一个SLAM框架中,以消除由漂移引起的姿态估计误差,并使用KITTI数据集进行了测试。
在这里插入图片描述

2020

LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping

code: https://github.com/TixiaoShan/LIO-SAM
知乎讲解: https://zhuanlan.zhihu.com/p/352120054
摘要: 我们提出了一个通过平滑和映射的紧密耦合激光雷达惯性测程法框架,LIO-SAM,它实现了高精度、实时的移动机器人轨迹估计和地图构建。LIO-SAM在一个因子图上制定激光雷达惯性测程法,允许大量的相对和绝对测量,包括环路闭包,从不同的来源作为因素纳入系统。从惯性测量单元(IMU)预积分得到的估计运动可以去除点云,并产生激光雷达测程优化的初始猜测。利用所得到的激光雷达测程解来估计IMU的偏差。为了确保实时的高性能,我们边缘旧的激光雷达扫描以进行姿态优化,而不是将激光雷达扫描匹配到全局地图。局部尺度而不是全局尺度的扫描匹配显著提高了系统的实时性能,选择性地引入关键帧,以及有效的滑动窗口方法,将新的关键帧注册到固定大小的先前“子关键帧”集。该方法在不同尺度和环境下的三个平台收集的数据集上进行了广泛的评估。
在这里插入图片描述
知乎讲解https://www.zhihu.com/column/c_1619085291536433152

FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter

code: https://cs.paperswithcode.com/paper/fast-lio-a-fast-robust-lidar-inertial
摘要:本文提出了一种计算效率高、鲁棒性强的激光雷达-惯性测程框架。我们使用紧密耦合的迭代扩展卡尔曼滤波器将激光雷达特征点与IMU数据融合,以允许在快速运动、有噪声或杂乱的环境中进行鲁棒导航。为了降低存在大量测量值时的计算负荷,我们提出了一个新的计算卡尔曼增益的公式。新公式的计算负载取决于状态维度,而不是测量维度。所提出的方法及其实现在各种室内和外环境中进行了测试。在所有的测试中,我们的方法实时产生可靠的导航结果:运行在四旋翼计算机上运行,它在扫描中融合超过1200个有效特征点,并在25 ms内完成iEKF步骤的所有迭代。
在这里插入图片描述

2021

LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

code: https://github.com/TixiaoShan/LVI-SAM
摘要: 我们提出了一个通过平滑和映射的紧密耦合激光视觉惯性测程法框架,LVI-SAM,实现了高精度和鲁棒性的实时状态估计和地图构建。LVI-SAM建立在一个因子图之上,由两个子系统组成:一个视觉惯性系统(VIS)和一个激光雷达惯性系统(LIS)。这两个子系统以紧密耦合的方式设计,其中VIS利用LIS估计来促进初始化。利用激光雷达测量方法提取视觉特征的深度信息,提高了VIS的精度。反过来,LIS利用VIS估计来进行初始猜测,以支持扫描匹配。循环关闭首先由VIS识别,并由LIS进一步细化。LVI-SAM也可以在两个子系统中的一个发生故障时发挥作用,这增加了其在无纹理和无特征环境中的鲁棒性。LVI-SAM在不同规模和环境下的多个平台收集的数据集上进行了广泛的评估。

在这里插入图片描述
在这里插入图片描述

FAST-LIO2: Fast Direct LiDAR-inertial Odometry

code: https://cs.paperswithcode.com/paper/fast-lio2-fast-direct-lidar-inertial-odometry
摘要:本文提出了FAST-LIO2:一个快速、鲁棒和通用的激光雷达惯性测程框架。FASTLIO2基于一个高效的紧密耦合迭代卡尔曼滤波器,FASTLIO2有两个关键的新特性,允许快速、健壮和精确的激光雷达导航(和映射)。第一个方法是将原始点直接注册到地图上(随后更新地图,即映射),而不提取特征。这使得我们能够利用环境中的微妙特征,从而提高了准确性。消除了手工设计的特征提取模块,也使它自然地适应不同扫描模式的激光雷达;第二个主要的新颖之处是通过增量k-d树数据结构ikd-Tree维护地图,从而实现增量更新(即点插入、删除)和动态重新平衡。与现有的动态数据结构(八叉树、R∗树、纳米纤维膜k-d树)相比,ikd-Tree在自然支持对树的降采样的同时,实现了优越的整体性能。我们对来自各种开放的激光雷达数据集的19个序列进行了详尽的基准测试比较。与其他最先进的激光雷达-惯性导航系统相比,FAST-LIO2在更低的计算负载下实现了持续的更高的精度。在具有小视场的固态激光雷达上也进行了各种现实世界的实验。总的来说,FAST-LIO2具有计算效率(例如,在大型户外环境中高达100赫兹的测程和映射),鲁棒(例如,在杂乱的旋转高达1000度/秒的室内环境中可靠的姿态估计),多用途(即,适用于多线旋转和固态激光雷达、无人机和手持平台,以及基于英特尔和arm的处理器),同时仍然实现比现有方法更高的精度。
在这里插入图片描述

2022

FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry

code: https://cs.paperswithcode.com/paper/fast-livo-fast-and-tightly-coupled-sparse
摘要:为了在同步定位和映射(SLAM)任务中实现精确和鲁棒的姿态估计,多传感器融合被证明是一种有效的解决方案,因此在机器人应用中提供了巨大的潜力。本文提出了一种快速的激光雷达-惯性-视觉测光系统FAST-LIVO系统,它建立在两个紧密耦合的直接测光子系统之上:一个VIO子系统和一个LIO子系统。LIO子系统将一个新扫描的原始点(而不是在边缘或平面上的特征点)注册到一个增量构建的点云映射中。地图点还附加了图像补丁,然后在VIO子系统中使用这些图像补丁,通过最小化直接光度误差,而不提取任何视觉特征(例如,ORB或FAST角特征)。为了进一步提高VIO的鲁棒性和准确性,提出了一种新的离群值拒绝方法来拒绝位于边缘上或在图像视图中被遮挡的不稳定映射点。对开放数据序列和我们的定制设备数据进行了实验。结果表明,我们提出的系统优于其他同类系统,并且能够以更低的计算成本处理具有挑战性的环境。该系统支持多线旋转激光雷达和具有完全不同扫描模式的新兴固态激光雷达,并可以在Intel和ARM处理器上实时运行。

论文的贡献:

  • 一种紧凑的激光雷达-惯性-视觉测程框架,它建立在两个直接和紧密耦合的测程系统之上:一个LIO子系统和一个VIO子系统。这两个子系统通过将各自的激光雷达或视觉数据与imu融合,共同估计系统的状态。
  • 一个直接、高效的VIO子系统,最大限度地重用LIO子系统中构建的点云图。具体来说,地图中的点与之前观察到的图像斑块相连,然后投影到一个新的图像上,通过最小化直接光度误差来对齐其姿态(从而达到整个系统状态)。在VIO子系统中重用的激光雷达点避免了视觉特征的提取、三角测量或优化,并在测量水平上耦合了两个传感器。
  • 将拟议的系统实现为一个实用的开放软件,可以在Intel和ARM处理器上实时运行,并支持多线旋转激光雷达和具有完全不同扫描模式的新兴固态激光雷达。
  • 在开放数据序列(即NTU病毒数据集[12])和我们定制的设备数据上验证所开发的系统。结果表明,我们的系统优于其他同类系统,能够处理具有挑战性的传感器退化环境,降低计算成本。
    在这里插入图片描述

参考

https://github.com/sjtuyinjie/awesome-LiDAR-Visual-SLAM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值