
商业智能
文章平均质量分 90
deepdata_cn
极深数据,深耕数据行业。
展开
-
数据可视化语法工具(VegaLite)
VegaLite 是一种用于数据可视化的语法和工具。VegaLite是基于Vega可视化语法的一种高层次、简洁的可视化规范。它提供了一种声明式的方式来描述数据可视化,让用户能够通过简单的JSON格式或特定的编程语言接口来定义可视化的各个方面,如图形类型、数据映射、视觉编码等,而无需详细了解底层的绘图细节和复杂的交互逻辑。原创 2025-01-28 07:00:00 · 742 阅读 · 0 评论 -
开源BI解决方案(Pentaho)
Pentaho是一个流行的开源商业智能软件。原创 2024-10-05 07:30:00 · 1128 阅读 · 0 评论 -
数据分析平台(Alteryx)
Alteryx可以加速或自动化业务流程,并支持地理空间和预测解决方案。其平台有助于组织快速、高效地回答业务问题,可作为数字化转型或自动化计划的重要组成部分。在数据质量方面,Alteryx 提供了数据清洗、转换和验证的功能,能够帮助用户快速处理和优化数据。此外,它还具有直观的可视化界面,方便用户进行操作和分析。适用于需要快速处理和分析数据的企业,尤其是那些希望通过自动化流程提高数据处理效率的企业。例如,市场调研公司、电商企业等,可以使用 Alteryx 来处理大量的市场数据、销售数据等,以便及时做出决策。原创 2024-09-20 07:45:00 · 1269 阅读 · 0 评论 -
数据可视化解决方案(AntV)
AntV是蚂蚁金服全新一代数据可视化解决方案。需要一定的技术含量进行二次开发。它采用的 the grammar of graphics 语法,与其他可视化库相比有其独特之处,为用户提供了专业可靠、具有无限可能的数据可视化实践。原创 2024-09-16 07:45:00 · 2295 阅读 · 0 评论 -
数据可视化库(Pyecharts)
Pyecharts是当数据分析遇上 Python 语言时诞生的一个数据可视化库。Echarts 是一个由百度开源的数据可视化库,而 Pyecharts 以 Python 为基础,对 Echarts 进行了封装和扩展。特点:以其高度灵活的配置项,使用户可以轻松搭配出精美的图表。它结合了 Python 的强大数据处理能力和 Echarts 的优秀可视化效果,为 Python 开发者提供了便捷的数据可视化工具。原创 2024-09-16 07:30:00 · 1086 阅读 · 0 评论 -
数据可视化分析平台(DataGear)
DataGear是开源免费的数据可视化分析平台,采用浏览器 / 服务器架构。功能特点:支持运行时接入多种数据源,包括常见的关系数据库以及 Elasticsearch、ClickHouse、Hive 等大数据引擎;支持创建多种格式的数据集,如 SQL、CSV、Excel、HTTP 接口、JSON 等,并可设置为动态的参数化数据集;内置丰富的图表类型,如折线图、柱状图、饼图、地图等,且支持自定义图表配置项和编写上传自定义图表插件;原创 2024-09-15 07:45:00 · 1846 阅读 · 0 评论 -
开源数据可视化平台的选择
数据可视化平台可以将复杂的数据以图表、图形等直观的形式展现出来,使数据的结构、趋势和关系一目了然。例如,通过柱状图可以清晰地比较不同类别数据的大小;折线图则能直观地反映数据随时间的变化趋势。帮助非专业数据分析师的用户,如企业管理者、业务人员等,快速理解数据的含义,无需深入了解数据的底层结构和复杂的统计分析方法。借助可视化工具的交互功能,用户可以动态地探索数据,从不同角度观察数据的分布和变化。例如,通过缩放、筛选和钻取等操作,深入分析特定时间段或特定数据子集的趋势和模式。原创 2024-09-14 08:58:50 · 1202 阅读 · 0 评论 -
数据可视化工具(DataEase)
DataEase 是一款人人可用的开源数据可视化分析工具。是目前国内比较火的开源数据可视化工具.2021年2月,DataEase 开源项目组成立。近几年DataEase 持续发展,在功能、性能、用户体验等方面不断优化和提升,社区用户不断增长,应用场景也日益广泛,在数据可视化领域的影响力逐渐扩大。其具体发展动态可能需要通过官方渠道、技术论坛、社交媒体等进一步了解。其支持丰富的数据源连接,能够通过拖拉拽方式快速制作图表,并方便与他人分享。功能上支持 PC 端、移动端及大屏展示;原创 2024-09-05 07:30:00 · 2107 阅读 · 0 评论 -
数据探索工具(Superset)
Superset由 Airbnb 贡献的轻量级 BI 产品,在 Github 上很受欢迎。它提供了 dashboard 和多维分析两大类功能,数据源支持广泛,包括 CSV、MySQL、Oracle、Redshift、Drill、Hive、Impala、Elasticsearch 等多种。其可视化效果好,直接支持几十种图形,还提供图形扩展支持,可对接如 Echarts、AntV、Highcharts、Vx 和 D3 等可视化库。原创 2024-09-04 07:45:00 · 1213 阅读 · 0 评论 -
效度分析(Validity Analysis)
效度分析(Validity Analysis)是心理学、教育学、社会科学以及许多其他领域中用于评估测量工具或测试的有效性的一种方法。效度指的是一个测试或测量工具能够准确测量它所声称要测量的概念的程度。效度分析的目的是确保研究结果的可靠性和有效性,以便研究者可以信任他们的发现。原创 2024-05-28 08:00:00 · 2681 阅读 · 0 评论 -
数字人才 ❉ 风控数据分析师(Risk Control Data Analyst)
风控数据分析师(Risk Control Data Analyst)是金融行业一个非常重要的职位,主要负责使用数据分析技术来评估和管理金融风险。原创 2024-05-11 07:45:00 · 813 阅读 · 0 评论 -
数字人才 ❉ 薪酬分析师
薪酬分析是一个涉及对,薪酬分析师(Compensation Analyst)的工作不仅仅是对数据的描述,更重要的是基于数据现状的分析,给出判断和解释,提供管理层不知道的信息,以支持企业在人力资源管理上的决策。原创 2024-05-09 20:20:38 · 1098 阅读 · 0 评论 -
即席报告——一种商业智能方法
(Ad hoc reporting)是一种商业智能方法,允许用户根据需要创建报告,专门定制以回答即时的商业问题或处理特定情况。与遵循固定时间表或格式的预定义报告不同,即席报告具有灵活性,允许进行一次性的定制分析。它的设计目的是提供快速洞察并支持决策制定,而无需等待生成标准报告的延迟。即席报告可以从零开始创建,或根据创建时用户的特定需求修改现有报告。即席报告的关键特点包括敏捷性、多功能性、灵活性、可访问性、赋予所有用户权力和可共享性。原创 2024-05-05 08:15:00 · 598 阅读 · 0 评论 -
ABC库存管理技术
ABC分析是一种强大的库存管理技术,帮助企业根据风险数据、成本和需求等因素确定其库存项目的重要性。● 零售业:面对季节性波动强、款式更新快的特点,零售企业通过ABC分析,能快速识别出畅销品(A类)与滞销品(C类),及时调整采购计划与店面陈列,确保热销商品的充足供应,同时减少非季节性商品的库存占用。● 制造业:在复杂的生产环境中,ABC分析帮助制造商识别关键原材料和部件(A类),确保这些高价值物料的稳定供应,避免生产线停顿。原创 2024-05-04 11:49:22 · 1185 阅读 · 2 评论 -
商业智能 vs 人工智能
商业智能Business Intelligence(BI)和人工智能Artificial Intelligence(AI)是两个不同的领域,AI中的“智能”指的是类似于人类的计算机智能,而BI中的“智能”则指的是智能决策。虽然它们在目标、技术、应用等方面有所区别,但也存在一定的联系和互补性。原创 2024-05-04 10:58:12 · 784 阅读 · 0 评论 -
数据科学——关联规则学习(Association Rule Learning)
关联规则学习作为一种强大的数据分析工具,其潜力远未被完全发掘。未来的发展方向将更加侧重于算法的高效性与可扩展性、深度学习与传统方法的融合、以及在新兴领域的应用探索。同时,伴随着对数据伦理的深入讨论,关联规则学习的应用将更加注重平衡技术进步与社会责任,确保数据科学在促进社会福祉的同时,维护个人隐私和数据安全。原创 2024-05-06 08:00:00 · 1090 阅读 · 0 评论 -
自助式商业智能(Self-Service BI)的优势
自助式商业智能(Self-Service BI)代表了一种革新性的方法、技术工具集合,旨在使非技术背景的终端用户能够在无需IT部门介入的情况下,自主探索和解析大规模业务数据,并构建个性化的仪表板。这一转变使得数据洞察不再是少数专家的专属领域,而是成为组织全员可触及的宝贵资源,促进了数据民主化与决策效率的双重提升。原创 2024-05-06 07:45:00 · 758 阅读 · 0 评论 -
零基础转行成为数据分析师
当前,数据分析师的市场供需状况呈现出需求旺盛而供应相对紧张的特点。随着大数据技术的快速发展和数字化转型的深入推进,各行各业对数据分析师的需求持续增长。数据分析师在企业中扮演着至关重要的角色,他们通过分析和解读数据,为企业决策提供支持,帮助企业优化运营流程、预测市场趋势、提高效率和竞争力。一方面,企业对于数据分析师的需求不断上升。在金融、电信、互联网、政府、健康医疗等多个行业,数据分析师的应用越来越广泛。原创 2024-04-19 07:45:00 · 993 阅读 · 0 评论 -
如何构建数据指标体系
构建一套科学、完备且实用的数据分析指标体系是一项系统性的工程,其核心在于将业务理解、目标设定、度量标准选择、数据采集与整理、数据分析、指标体系构建、持续优化与改进等多个环节有机融合,以实现对业务状况的精准刻画、趋势预测及决策支持。原创 2024-04-11 08:00:00 · 2141 阅读 · 1 评论 -
标签 vs 指标
标签与指标,作为数据分析与业务决策中的重要工具,各自承载着独特的功能与价值。虽然在日常工作中,人们往往同时使用它们来揭示数据背后的业务现象与规律,但对其明确定义、差异以及关联性的理解并不总是清晰。我们通过深入剖析标签与指标的概念、特性、分类及其应用场景,从而更好地掌握这两种数据元素的本质,并在实际工作中有效地运用它们。原创 2024-04-10 07:55:22 · 1020 阅读 · 1 评论 -
商业数据分析师的能力模型
商业数据分析师的角色在当今的数字化商业环境中愈发关键,需凭借深厚的专业知识、敏锐的洞察力及高效的协作能力,从海量数据中提炼出宝贵的商业洞见,为企业的战略规划与日常运营提供精准指导。商业分析是以“需求”为主的各类任务,商业分析师使用各种软件应用来支持沟通与协作、创建与维护需求产物、为概念建模、跟踪问题以及提高总体产出率。数据分析师需要具备数据处理和分析的技能,能够从数据中发现规律、趋势和关联,为业务决策提供科学依据。商业数据分析师是商业分析和数据分析两个岗位的融合,或者说是一个技能全面的商业分析师。原创 2024-04-13 09:05:25 · 774 阅读 · 0 评论 -
自助式BI工具功能探索
自助式商业智能(BI)系统是一种革新性的技术解决方案,它旨在赋予非专业技术人员独立进行复杂数据分析和报告生成的能力,以应对瞬息万变的市场环境,促进基于数据驱动的决策过程,从而显著提升企业决策质量与业务运营效率。原创 2024-04-13 09:00:00 · 726 阅读 · 0 评论