
图片分类
文章平均质量分 92
deepdata_cn
极深数据,深耕数据行业。
展开
-
深度学习图像分类(Jittor)
计图(Jittor)是清华大学自主研发的深度学习框架,它支持元算子和即时编译,提供了图像分类等多种深度学习任务的实现示例和教程。Jittor具有高效的计算能力和灵活的编程接口。和其他深度学习框架(如TensorFlow、PyTorch)类似,Jittor的目标是帮助开发者更方便地构建和训练神经网络模型。原创 2024-11-23 07:30:00 · 2109 阅读 · 0 评论 -
图像分类和目标检测(DeepDetect)
DeepDetect是一个专注于图像分类和目标检测的开源深度学习平台。它基于 C++ 编写,具有高效的计算性能和较低的内存占用。DeepDetect 提供了简单易用的 API,方便开发者快速构建图像分类系统。它支持多种深度学习模型,如卷积神经网络等,并且可以根据用户的需求进行定制和扩展。在实际应用中,DeepDetect 可以用于构建智能安防系统、图像搜索引擎等。图像分类是计算机视觉领域的基本任务,目标是将输入的图像分配给某个预定义的类别(即标签)。原创 2024-11-21 07:30:00 · 948 阅读 · 0 评论 -
开源照片管理工具(PhotoPrism)
PhotoPrism是一款基于 TensorFlow 的开源照片管理工具,虽然主要功能是照片管理,但也具备自动图像分类的能力。能够精准检测图片的颜色、色度、亮度、质量等属性,还可以识别全景照片、地理位置信息、黑白照片等。支持中文界面,部署相对简单,通过 Web 界面即可方便地访问和管理照片。适合个人用户、摄影爱好者等对照片进行管理和分类,也可用于一些小型的图像分类项目或对特定类型图片的分类需求。PhotoPrism 诞生于2018年,由前 Google 工程师 Michael Mayer 发起。原创 2024-11-20 07:30:00 · 1789 阅读 · 0 评论 -
零样本图像分类器(Zeroshot)
ZeroShot Image Classifier(Zeroshot)是一款面向开发人员的开源工具,可从文本描述中创建图像分类器。它结合了大型图像数据集(LAION5B)和文本搜索模型(CLIP)以及一个预训练模型(DinoV2)来实现图像分类。使用文本的力量创建分类器,具有低延迟、快速高效的实时图像分类能力,并且可以离线访问,方便随时随地进行部署。适用于需要根据文本描述进行图像分类的场景,例如根据用户输入的文本描述对图片进行自动分类、筛选等。原创 2024-11-02 07:30:00 · 1960 阅读 · 0 评论 -
AI图像分类工具(Lobe)
Lobe是一款专门做图像分类的人工智能工具,具有简单易用的特点,无需编程即可进行图像分类建模。用户只需添加图片并打上标签,即可开始训练模型。它还支持自动优化模型,省去了人工调参的过程。模型输出类型多,支持导出为多种格式,方便开发者后续使用。适合不具备编程经验的用户进行图像分类项目的开发,例如初学者、非专业开发人员等想要快速建立图像分类模型的场景。Lobe公司成立于2016年8月,总部位于加利福尼亚州旧金山,在2018年9月被微软收购。原创 2024-11-01 07:45:00 · 2433 阅读 · 0 评论