
人工智能
文章平均质量分 87
deepdata_cn
极深数据,深耕数据行业。
展开
-
BERT的变体模型(ELECTRA)
ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately)是Google于2020年推出的预训练语言模型,针对BERT类模型训练效率低下和数据利用率不足的痛点,提出了颠覆性的解决方案。传统BERT依赖掩码语言模型(MLM)任务,仅利用输入中15%的Token进行预测,导致大量语义信息浪费。而ELECTRA通过替换Token检测(RTD)任务,迫使模型对输入的每个Token进行细粒度语义判别,实现原创 2025-05-29 07:30:00 · 762 阅读 · 0 评论 -
MPP架构数据库与AI融合的探索与实践
IDC 预测,到 2025 年全球数据总量将达 175ZB,如此庞大的数据规模对企业的数据存储与处理能力提出了前所未有的挑战。传统单机数据库在面对 PB 级数据时,无论是查询响应速度还是系统扩展性都显得力不从心,而大规模并行处理(Massively Parallel Processing, MPP)架构数据库凭借其独特优势,成为企业处理海量数据的核心工具。与此同时,人工智能(Artificial Intelligence, AI)技术的蓬勃发展,如机器学习、深度学习等,为数据分析开辟了新的路径。原创 2025-04-24 07:30:00 · 979 阅读 · 0 评论 -
视频生成对抗网络(Video GAN)
Video GAN 是一种专门为生成连续视频帧序列而精心设计的特殊生成对抗网络架构。它主要由生成器和判别器这两大关键部分构成。生成器犹如一位富有创造力的艺术家,其主要职责是从随机噪声或者特定条件出发,精心构建出逼真的视频片段。它如同一个充满无限可能的创意源泉,在给定的输入条件下,通过复杂的神经网络运算,将抽象的信息转化为一帧帧鲜活的视频画面。判别器的任务是仔细甄别这些合成视频与真实世界中的视频样本。原创 2025-04-21 07:30:00 · 969 阅读 · 0 评论 -
智能体的现况和发展趋势
智能体(Agents)作为 AI 领域中一颗璀璨耀眼的重要分支,于过去数年历经了突飞猛进的发展旅程,取得了令人瞩目的显著进步。从最初仅能执行简单任务自动化的基础形态,一路演进至如今能够构建复杂决策支持系统的高级阶段。无论是在日常生活的便捷辅助,还是在专业领域的深度应用,智能体都已然留下了深刻且广泛的印记。原创 2025-04-07 07:30:00 · 1246 阅读 · 0 评论 -
人工智能时代如何重塑分配关系?
在科技迅猛发展的当下,人工智能(AI)技术正以破竹之势席卷而来,全方位、深层次地变革着人类社会。从生产领域的智能化升级,到社会组织架构的创新调整,AI 已然重塑了经济运行的底层逻辑。在此时代浪潮下,分配关系,作为社会财富、资源与机会在不同主体间分配的关键方式,也无可避免地迎来了前所未有的挑战与机遇。原创 2025-04-02 07:45:00 · 640 阅读 · 0 评论 -
人工智能对就业市场的冲击与应对策略
随着人工智能(AI)技术以令人瞩目的速度迅猛发展,其在各行各业的深度应用正如同一场悄然而至却影响深远的变革风暴,深刻地重塑着全球经济和社会的运行模式。人工智能宛如一把双刃剑,不仅为社会带来了效率的显著提升以及众多前所未有的新机遇,与此同时,也不可避免地对传统就业市场产生了极为深远且复杂的影响。一方面,自动化技术凭借其高效、精准且不知疲倦的特性,正逐步将大量重复性和低技能的工作从人类手中接过,让这些岗位面临被取代的危机;另一方面,新兴职业如雨后春笋般涌现,对高技能岗位的需求也呈现出持续增长的态势。原创 2025-04-02 07:30:00 · 1491 阅读 · 0 评论 -
AI人才培养与生态构建
在当下数字化浪潮中,人工智能(AI)技术正以令人瞩目的速度迅猛发展,已然成为推动社会进步和经济发展的核心驱动力之一。从智能语音助手为人们的日常交互带来便利,到智能驾驶技术重塑交通出行格局,再到医疗影像诊断中 AI 助力精准检测,AI 的身影无处不在。然而,随着 AI 技术应用的边界不断拓展,其对人才的需求也呈现出爆发式增长,这对传统人才培养体系提出了前所未有的挑战。原创 2025-04-01 07:45:00 · 1089 阅读 · 0 评论 -
智能体与物理世界交互的技术
随着人工智能(AI)和机器人技术如火箭般迅猛发展,智能体(Agent)宛如一座日益坚固且重要的桥梁,稳稳地连接起数字世界与物理世界。智能体绝非简单的程序或装置,它宛如拥有 “智慧大脑” 的存在,不仅能够敏锐地感知周围环境,将获取到的各类复杂数据进行深度分析,更能依据分析结果迅速做出精准决策,并通过高效的控制手段与物理世界展开实时交互。这种强大的交互能力宛如一把神奇的钥匙,为自动化生产、智能家居、自动驾驶、医疗辅助等众多领域打开了充满无限可能的大门,蕴含着引发巨大变革的潜力。原创 2025-04-01 07:30:00 · 888 阅读 · 0 评论 -
AI Infra大模型基础设施
在当今数字化浪潮中,人工智能(AI)已成为推动各行业变革的核心力量。而在AI的蓬勃发展进程里,大模型凭借其强大的认知和处理能力崭露头角。从自然语言处理领域的GPT系列到计算机视觉中的各类大型模型,它们在理解、生成和预测复杂信息方面展现出了前所未有的性能。但这一切的背后,离不开一个关键的支撑体系——AI Infra(Artificial Intelligence Infrastructure),即人工智能基础设施。原创 2025-03-31 07:45:00 · 1244 阅读 · 0 评论 -
GenAI产品创新与探索
GenAI是一种基于深度学习的人工智能技术,专注于生成内容而非简单地分类或预测。其核心技术包括:● 自然语言处理(NLP):用于生成文本内容,例如文章、对话和代码。● 计算机视觉(CV):用于生成图像、视频和3D模型。● 多模态模型:结合多种数据类型(如文本、图像和音频),实现跨模态的内容生成。● 强化学习与生成对抗网络(GANs):用于优化生成内容的质量和多样性。原创 2025-03-29 07:45:00 · 618 阅读 · 0 评论 -
大模型应用框架和工具介绍
大模型通常指参数量达到数十亿甚至数千亿的深度学习模型,如GPT系列、BERT、T5、CLIP等。这些模型具有以下特点:● 高性能:在多种任务上表现出色,具备强大的泛化能力。● 高复杂性:需要大量的计算资源和存储空间。● 高成本:训练和推理过程对硬件依赖较高。● 多功能性:通过微调或提示工程(Prompt Engineering),可以应用于多种下游任务。因此,大模型的实际应用需要借助专门的框架和工具来简化开发流程并提升效率。原创 2025-03-29 07:30:00 · 1852 阅读 · 0 评论 -
大语言模型的技术演进:回顾、现状与展望
在数字化时代浪潮的推动下,自然语言处理(NLP)领域正经历着前所未有的变革,其中大语言模型(Large Language Models, LLMs)无疑是最为耀眼的明星。近年来,大语言模型取得了令人瞩目的显著进展,宛如一颗在技术苍穹中冉冉升起的新星,迅速照亮了自然语言处理的诸多应用场景。这些模型展现出了令人惊叹的能力,它们能够生成逻辑连贯、语法正确且富有语义内涵的高质量文本,无论是撰写新闻报道、创作故事小说,还是生成专业领域的文档,都能应对自如;原创 2025-03-27 07:45:00 · 1620 阅读 · 0 评论 -
多模态大型行动模型(LAM)
多模态大型行动模型(LAM)是一种先进的人工智能模型,旨在将多模态感知与行动能力深度融合,使人工智能能够更全面、更智能地与现实世界进行交互。1.多模态输入处理:能够处理多种类型的输入数据,涵盖视觉数据(如图像、视频)、听觉数据(如语音)、传感器读数以及实时环境反馈等,像人类一样综合利用多渠道信息来理解周围环境和任务需求。2.基于理解的行动生成与执行:以对多模态输入和上下文的深入理解为基础,生成并执行特定操作。原创 2025-03-03 07:30:00 · 753 阅读 · 0 评论 -
人工智能在心脏监护领域的应用
在医院的心脏科、重症监护病房等部门,人工智能辅助心电图分析系统可快速处理大量心电数据,自动识别异常,生成初步报告,减轻医生工作负担,提高诊断效率,使临床工作流程更加高效。在手术室中,人工智能实时监护患者心脏状态,及时发现潜在风险,为手术保驾护航,提高患者安全性。据QY Research统计及预测,2023年全球人工智能心电图分析系统市场销售额达到了77亿美元,预计2030年将达到111亿美元,年复合增长率(CAGR)为5.2%(20242030)。原创 2025-03-01 07:30:00 · 854 阅读 · 0 评论 -
DeepSeek、Kimi、豆包、通义大模型在语义理解方面的技术异同点
大语言模型的语义理解技术是实现与人类有效交流互动、理解和处理人类语言语义信息的一系列技术手段。利用词向量将单词映射到低维空间表示语义关系,上下文词向量结合语境融合知识图谱,通过知识嵌入和知识引导的推理辅助语义理解。原创 2025-02-24 07:15:00 · 877 阅读 · 0 评论 -
中医脉象数字化应用
中医脉象是中医诊断学的重要组成部分,是指医生用手指触按患者手腕部的寸口脉,根据脉搏的形象、动态等特征所感知到的各种脉象表现。1.脉象形成的原理中医认为脉象的形成与心脏的搏动、心气的盛衰、脉道的通利以及气血的盈亏等因素密切相关。心脏的搏动是脉象形成的动力基础,心气充沛则心脏搏动有力,脉象和缓有力;脉道是气血运行的通道,脉道通利则气血运行顺畅,脉象正常;而气血的盈亏则直接影响脉象的形态和力度,如气血充足时脉象充盈,气血不足时脉象可能细弱。同时,肺主气,朝百脉,肺气的宣发肃降对气血的运行有调节作用;原创 2025-02-17 08:00:00 · 1877 阅读 · 0 评论 -
人工智能大模型(Gemini)
1.模型规格Gemini Ultra:能力最强,可在各种高度复杂任务中提供先进性能,如推理和多模态任务,能在TPU加速器上大规模服务。Gemini Pro:适用于多任务,在成本和延迟方面性能优化,有推理功能和广泛多模态能力。Gemini Nano:最高效,用于特定任务和移动设备,训练了参数为1.8B(Nano-1)和3.25B(Nano-2)两个版本,针对低内存和高内存器件,通过从更大模型中提取训练,可4位量化部署。原创 2025-02-17 07:45:00 · 1296 阅读 · 0 评论 -
预训练模型(LLaMA)
预训练模型(LLaMA)是Meta公司2023年2月推出的人工智能模型。2023年7月18日:Meta发布了开源大模型LLaMA 2,最大的卖点是开源且可商用。2024年4月18日:Meta推出了新版本LLaMA人工智能模型LLaMA 3,已用于Meta AI助手,同时也面向开发者进行了开源。2024年9月25日:Meta在Connect开发者大会上,发布了能够同时理解图像和文本的最新多模态模型LLaMA 3.2,允许人们通过语音进行互动。原创 2025-02-17 07:30:00 · 899 阅读 · 0 评论 -
向量计算在数据治理中的应用
向量计算是一种基于向量的数学运算,广泛应用于数学、物理学、计算机科学等多个领域。向量是具有大小和方向的量,在数学中通常用有序数组来表示。例如在二维空间中,向量v=(x,y),其中x和y分别是向量在x轴和y轴上的分量。向量计算在数据治理中具有多方面的重要作用,主要体现在数据质量评估、数据分类与标注、数据安全与隐私保护等环节。原创 2025-02-15 07:45:00 · 826 阅读 · 0 评论 -
人工智能推理模型(S1-32B)超越DeepSeek?
S1模型是由斯坦福大学和华盛顿大学的研究团队在李飞飞教授的领衔下开发的人工智能推理模型。从2000年李飞飞进入加州理工学院攻读研究生起,就一直从事人工智能研究,在计算机视觉领域创立了拥有1500万张图片的ImageNet数据库,为人工智能计算机视觉研究奠定了基础,也积累了深厚的人工智能技术理论和实践经验。论文地址:https://arxiv.org/pdf/2501.19393。原创 2025-02-16 07:45:00 · 801 阅读 · 0 评论 -
CLIP 跨模态学习
CLIP(Contrastive LanguageImage Pretraining)跨模态学习是OpenAI提出的一种能够将自然语言和图像两种模态进行联合学习的技术。通过在大规模数据集上联合训练图像和文本,使模型学习到图像内容与自然语言描述之间的映射关系。计算图像和文本的嵌入向量,通过衡量两者之间的余弦相似度,实现跨模态的检索和分类,可用于根据文本搜索相关图像或判断图像与文本的匹配程度等任务。原创 2025-02-13 08:00:00 · 928 阅读 · 0 评论 -
KAG知识增强生成框架
KAG(Knowledge Augmented Generation)是蚂蚁集团开源的一款知识增强生成框架。基于OpenSPG引擎和大型语言模型,设计了逻辑符号引导的混合推理引擎,将自然语言问题转化为结合语言和符号的问题求解过程,集成了图谱推理、逻辑计算、chunk检索、llm推理四种问题求解过程。用于为专业领域知识库构建逻辑推理和事实性问答解决方案。它能有效克服传统 RAG(检索增强生成)向量相似度计算模型的缺点。通过知识图谱与原始文本块的互索引,能清晰展示知识来源与关联。原创 2025-02-13 07:45:00 · 622 阅读 · 0 评论 -
LLM大语言模型的市场竞争格局
随着人工智能技术的飞速发展,大型语言模型(Large Language Models, LLMs)已经成为AI领域的一个重要组成部分。这些模型能够处理复杂的自然语言任务,如文本生成、翻译、问答等,极大地促进了人机交互的进步。原创 2025-02-12 08:00:00 · 823 阅读 · 0 评论 -
主流LLM大语言模型的商业模式与盈利状况
随着人工智能技术的飞速发展,特别是自然语言处理(NLP)领域的突破,大型语言模型(Large Language Models, LLMs)已经成为科技界炙手可热的话题之一。这些模型能够执行广泛的任务,从文本生成到对话理解等,为众多行业提供了前所未有的机会。然而,开发和维护这样复杂的系统需要巨大的投入,因此探索有效的商业模式对于确保其可持续发展至关重要。原创 2025-02-12 07:45:00 · 1698 阅读 · 0 评论 -
大语言模型的语境应用
大语言模型的语境指的是在语言交互过程中,围绕特定文本或话语所存在的各种相关信息,这些信息能够帮助模型更好地理解和生成语言,使语言表达和理解更加准确、连贯和合理。原创 2025-02-12 07:30:00 · 1405 阅读 · 0 评论 -
多层感知机(Multilayer Perceptron,MLP)
MLP也被称为人工神经网络(Artificial Neural Network,ANN)的一种基本形式,以下从定义、结构、工作原理、训练算法、应用等方面进行介绍:多层感知机是一种前馈人工神经网络,由多个神经元(神经节点)组成,这些神经元按照层次结构排列,包括输入层、隐藏层和输出层,层与层之间的神经元通过权重连接,信息从输入层依次向前传播到输出层,没有反馈连接。原创 2025-02-11 08:00:00 · 2620 阅读 · 0 评论 -
LLM大语言模型的组成部分
LLM(Large Language Model)大语言模型由输入层将文本转为向量,基于Transformer架构的编码器提取语义与上下文信息,解码器据此生成输出,输出层经Softmax和搜索策略将向量转为最终文本;通过在大规模无监督语料上预训练学习通用知识,再针对具体任务用有标注数据微调;记忆与缓存机制处理长序列并提高效率,评估模块用困惑度等指标衡量性能,优化模块据此调整超参数、改进结构。原创 2025-02-11 07:45:00 · 870 阅读 · 0 评论 -
DeepSeek vs ChatGPT
DeepSeek和ChatGPT都是强大的语言模型,但它们在多个方面存在主要技术区别。原创 2025-02-11 07:30:00 · 2174 阅读 · 0 评论 -
大模型推理能力的发展
大语言模型的推理能力,简单来说,就是让模型像人一样“动脑子思考”,根据已经知道的信息来得出新的结论或者做出合理的判断。大语言模型首先要能理解输入给它的各种信息,就像我们看一篇文章、听别人说话要明白是什么意思一样。比如你给它一段关于动物习性的描述,它得知道说的是哪种动物,有什么特点等。然后,它还要能对这些信息进行分析,把重要的部分挑出来,就像我们读完一篇文章后总结重点一样。原创 2025-02-10 07:30:00 · 846 阅读 · 0 评论 -
什么是多跳知识推理
多跳知识推理是一种在知识图谱等知识表示结构上进行的复杂推理方式,通过多个步骤或“跳跃”来推断出隐含的知识或关系。多跳知识推理是指在知识图谱中,从一个或多个已知的节点(实体)出发,通过沿着多条边(关系)进行多次跳转,利用多个相关的知识片段,来推导出新的知识或结论的过程。例如,在一个包含人物、电影、导演等信息的知识图谱中,已知“演员A出演了电影B”以及“电影B的导演是C”,通过这两条信息的“跳跃”,可以推理出“演员A和导演C有合作关系”。原创 2025-02-09 08:00:00 · 947 阅读 · 0 评论 -
知识推理的发展历程
知识推理是从已有的知识出发,运用逻辑规则、推理算法等手段,推导出新的知识或结论的过程,在人工智能、知识图谱、数据挖掘等多个领域都有重要应用。知识推理的目的是获取新知识。通过对已掌握的知识进行分析、推导,发现隐藏在数据和知识中的新信息,扩展知识边界。例如,在医疗领域,根据患者的症状、检查结果以及已有的医学知识,推理出可能患有的疾病及潜在的并发症,从而为诊断和治疗提供更多依据。其次是验证知识的一致性和完整性。检查知识体系中是否存在矛盾或缺失的部分。原创 2025-02-09 07:45:00 · 695 阅读 · 0 评论 -
BERT算法族
BERT(Bidirectional Encoder Representations from Transformers)算法即双向Transformer编码器表征,是一种用于自然语言处理(NLP)的预训练模型,由谷歌在2018年提出。BERT算法为自然语言处理领域带来了重大突破,为各种NLP任务提供了强大的基础模型,后续许多NLP研究和应用都是在BERT的基础上进行改进和扩展的。原创 2025-02-05 08:00:00 · 1766 阅读 · 0 评论 -
AI无监督预训练
无监督预训练(Unsupervised Pretraining)是一种机器学习技术,旨在让人工智能模型在没有人工标注数据的情况下,自动从大量原始数据中学习到通用的特征和模式。无监督预训练的核心是让模型自主地从数据中发现规律和结构。例如,在处理大量文本数据时,模型会自动识别词与词之间的共现关系、句子的结构模式等;在处理图像数据时,会自动学习图像的边缘、纹理等基本特征。模型主要基于数据的统计信息和概率分布来进行学习。通过计算数据中各种特征出现的频率、不同特征之间的相关性等,来构建对数据的理解。原创 2025-02-05 07:45:00 · 939 阅读 · 0 评论 -
人工智能训练技术
人工智能训练技术(Artificial Intelligence Training Techniques)在推动人工智能发展、实现各种智能应用等方面发挥着至关重要的作用。通过大量的数据和合适的训练技术,模型能够学习到数据中的复杂模式和规律,从而提高对未知数据的预测和判断准确性。例如在图像识别中,经过充分训练的卷积神经网络可以准确识别各种物体,在医疗影像诊断中帮助医生更准确地发现病变。训练技术能够让模型在不同的数据集和实际应用场景中都保持较好的性能表现,避免过拟合。原创 2025-02-05 07:30:00 · 993 阅读 · 0 评论 -
局部敏感哈希(LSH)
局部敏感哈希(Locality Sensitive Hashing,LSH)是一种在高维数据处理中广泛应用的技术。它的核心特点是能够在一定程度上保持数据的相似性,即相似的数据在哈希后有较高的概率被映射到同一个桶(bucket)中,而不相似的数据则大概率被映射到不同的桶中。原创 2025-02-04 08:00:00 · 1309 阅读 · 0 评论 -
人工智能学习入门
人工智能学习入门可以从了解基础知识、掌握编程语言、熟悉工具框架、实践项目操作等方面入手。原创 2025-02-04 07:45:00 · 2090 阅读 · 0 评论 -
全场景深度学习开源框架(MindSpore)
MindSpore是华为推出的一款全场景深度学习开源框架。旨在实现不同计算平台(如云端、边缘端、端侧)和不同硬件(如CPU、GPU、Ascend等)之间的高效协同。无论是在数据中心的大规模计算,还是在手机、物联网设备等资源受限的终端上,MindSpore都能灵活适配,充分发挥各硬件平台的性能优势,实现模型的高效训练和推理。该框架引入了自动并行技术,能够根据模型结构和硬件资源自动进行并行策略的搜索和优化。原创 2025-02-04 07:30:00 · 905 阅读 · 0 评论 -
多头潜在注意力机制(MLA)
多头潜在注意力机制(Multi-Head Latent Attention,MLA)相比传统的注意力机制,它能让模型在训练时同时预测更远位置的token,增强了对未来的感知能力,有助于模型更好地捕捉文本中的长距离依赖关系,提升对语义的理解和生成能力。MLA是在传统注意力机制基础上发展而来的一种改进型注意力机制。它的核心思想是通过多个头(head)的并行计算,让模型能够同时关注文本中不同位置和不同语义层面的信息,从而更全面、更深入地捕捉文本中的长距离依赖关系和复杂语义结构。原创 2025-02-03 08:00:00 · 3324 阅读 · 0 评论 -
混合专家架构(Mixture of Experts,MoE)
混合专家架构(Mixture of Experts,MoE)混合专家架构是一种将多个专门的子模型(称为“专家”)组合在一起的机器学习架构,通过一个门控网络来动态地决定在处理每个输入时应该使用哪些专家,从而利用多个专家的优势来处理复杂的任务,提高模型的性能和泛化能力。通过多个专家网络来处理不同的任务或特征,每个token可以激活不同的专家,模型能够根据输入的特点动态地选择合适的专家进行处理,提高了模型的灵活性和表达能力,同时在保证性能的前提下,降低了模型的计算成本和参数规模。原创 2025-02-03 07:45:00 · 1359 阅读 · 0 评论 -
FP8混合精度训练
FP8混合精度训练(FP8 mixed precision training)是一种在深度学习训练中采用的技术,旨在提高训练效率和降低计算成本,同时保持模型精度。采用FP8低精度训练技术,同时结合其他精度的数字表示进行混合精度训练。这样可以在保证计算速度的同时,降低通信开销,减少模型训练过程中的内存占用和计算量,提高训练效率,使得在有限的硬件资源下能够更快地训练大规模的模型。原创 2025-02-03 07:30:00 · 884 阅读 · 0 评论