
隐私计算
文章平均质量分 90
deepdata_cn
极深数据,深耕数据行业。
展开
-
如何提升隐私计算的计算效率
隐私计算作为一项融合密码学、分布式计算和人工智能的交叉学科技术,正逐步从理论走向实践。然而,计算效率的提升仍是其实现规模化应用的关键障碍。本文从算法优化、硬件加速、系统设计等多个角度探讨了提升隐私计算效率的策略,并展望了未来的研究方向。原创 2025-03-30 07:30:00 · 1010 阅读 · 0 评论 -
协作计算SDK(NVIDIA FLARE)
NVIDIA FLARE(NVIDIA Federated Learning Application Runtime Environment)是一个用于协作计算的开源Python SDK。它允许研究人员和数据科学家将机器学习、深度学习或一般计算工作流调整为联合范式,以实现安全、隐私保护的多方协作。原创 2024-11-29 07:30:00 · 1621 阅读 · 0 评论 -
联邦学习隐私计算开源平台(FATE)
Federated AI Technology Enabler(FATE)是一个非常知名的联邦学习隐私计算开源平台。它支持多种联邦学习算法和技术,能在各参与方数据不出本地的情况下,实现模型的联合训练和推理。这对于保护数据隐私、实现跨机构的数据合作具有重要意义。广泛应用于金融、医疗、政务等对数据隐私要求较高的领域。例如,在金融领域,不同金融机构可以在不共享客户敏感信息的前提下,共同训练风险评估模型,提升风险防控能力。原创 2024-11-03 07:45:00 · 1123 阅读 · 0 评论 -
隐私计算在金融行业的深度应用
隐私计算(Privacy calculation)在金融行业的应用正日益深入,为金融机构带来了诸多优势和创新机遇。隐私计算是一种在确保数据不对外泄露的前提下,实现数据分析计算的技术。它允许多个参与方在保护各自数据隐私的情况下,共同完成某项计算任务,从而达到“数据可用不可见”的目的。隐私计算技术包含多种隐私保护技术、隐私增强技术,涉及密码学、安全硬件、信息论、分布式计算等多个学科。在隐私计算过程中,数据在存储和传输时都应该是加密的。这意味着即使数据被截获,没有相应的密钥也无法解读数据内容。原创 2024-08-07 07:45:00 · 1087 阅读 · 0 评论 -
可信执行环境(Trusted Execution Environment,TEE)
可信执行环境(Trusted Execution Environment,TEE)是一种在计算系统中构建的安全机制。TEE通过硬件技术创建一个安全的环境,确保在其中运行的代码和数据的安全性,防止攻击者访问或篡改。原创 2024-07-19 07:30:00 · 1572 阅读 · 0 评论 -
多方安全计算(MPC )
多方安全计算(Secure Multi-Party Computation,MPC)是一种将计算分布在多个参与方之间的密码学分支,允许参与者在不泄露各自隐私数据情况下,共同完成计算任务。在需要多方数据进行联合计算的场景中,允许多个参与方在不泄露各自数据的情况下,共同完成某项计算任务。它起源于1982年姚期智院士提出的姚氏百万富翁问题,即在无可信第三方的情况下,如何让两个富翁比较谁更富有而不暴露各自的财富。原创 2024-07-18 07:45:00 · 1363 阅读 · 0 评论 -
差分隐私保护技术
差分隐私(Differential Privacy)是一种在数据发布和分析中保护个人隐私的技术。它的核心思想是在数据集中引入随机性,以确保单个数据点的隐私不被泄露,同时还能保持数据集的统计特性。原创 2024-07-18 07:30:00 · 1359 阅读 · 0 评论 -
同态加密(Homomorphic Encryption)
同态加密是一种特殊的加密形式,它允许对密文进行特定的运算操作,得到的结果解密后与对明文进行相同运算操作的结果相同。简单来说,如果存在一种加密算法E和对应的解密算法D,对于明文数据m1和m2以及运算op(如加法、乘法等),满足,那么这种加密算法就是同态加密算法。加法同态性:如果有两个加密的数值A和B,可以计算它们的和C = A + B,解密后C等于A和B的和。乘法同态性:如果有两个加密的数值A和B,可以计算它们的积C = A * B,解密后C等于A和B的积。原创 2024-07-16 07:30:00 · 1689 阅读 · 0 评论 -
零知识证明(Zero-Knowledge Proof, ZKP)
零知识证明(Zero-Knowledge Proof, ZKP)是一种密码学技术,它允许一方(证明者,Prover)向另一方(验证者,Verifier)证明某一陈述是真实的,而无需透露除了该陈述为真之外的任何额外信息。换句话说,零知识证明允许证明者证明他们知道一个秘密,而不需要透露这个秘密的任何信息。举个简单的例子,假设您要向朋友证明您知道某个秘密房间的开门密码,但是又不想让朋友知道这个密码具体是什么。原创 2024-07-16 07:45:00 · 1072 阅读 · 5 评论 -
隐私计算(Privacy calculation)
隐私计算(Privacy calculation)是一种在确保数据不对外泄露的前提下,实现数据分析计算的技术。它允许多个参与方在保护各自数据隐私的情况下,共同完成某项计算任务,从而达到“数据可用不可见”的目的。隐私计算技术包含多种隐私保护技术、隐私增强技术,涉及密码学、安全硬件、信息论、分布式计算等多个学科。在隐私计算过程中,数据在存储和传输时都应该是加密的。这意味着即使数据被截获,没有相应的密钥也无法解读数据内容。原创 2024-07-14 07:45:00 · 1586 阅读 · 0 评论