
DCMM
文章平均质量分 86
deepdata_cn
极深数据,深耕数据行业。
展开
-
DCMM在能源行业的应用
DCMM,即数据管理能力成熟度评估模型(Data Management Capability Maturity Assessment Model),是中国数据管理领域首个国家标准,旨在提高数据作为战略资源的地位,激活数据要素价值,帮助企业利用先进的数据管理理念和方法,完善数据资产管理体系。随着能源革命和数字革命的加速融合,数据管理能力的建设工作成为新型电力系统建设过程中不可或缺的重中之重,电力行业各单位需要以DCMM相关国家标准为依据,持续性开展数据管理能力建设及评估工作。原创 2024-07-04 08:00:00 · 578 阅读 · 0 评论 -
DCMM在医疗行业的应用
DCMM(数据管理能力成熟度评估模型)在医疗行业中有助于建立规范的数据管理流程和标准,确保医疗数据的准确性、完整性和一致性,从而提高医疗诊断和治疗的准确性。高质量的数据能够为医疗机构的管理层提供更可靠的依据,支持制定更科学合理的战略决策、资源分配和业务规划。规范的数据管理能够实现不同医疗机构之间数据的有效共享和交换,促进医疗协同合作,提高医疗服务的连续性和综合性。通过对数据的严格管理和访问控制,降低数据泄露和错误使用的风险,保障患者的隐私和医疗安全。原创 2024-06-27 07:45:00 · 748 阅读 · 0 评论 -
DCMM在金融行业的应用
DCMM的推广和应用对于金融行业尤为重要,因为它有助于解决金融机构在数据管理方面面临的挑战,如业务数据复杂性、数据安全合规要求、数据管理制度建设等。通过DCMM评估,金融机构能够更科学地衡量和管理数据,推动数据管理能力的提升,从而促进金融行业的数字化和智能化转型。原创 2024-06-26 07:45:00 · 1341 阅读 · 0 评论 -
人工智能(AI)应用于数据治理
人工智能(AI)在数据治理领域的应用,不仅是技术进步的象征,更是推动企业数字化转型与智能升级的关键力量。这一融合不仅深化了对数据价值的理解与挖掘,还极大地提升了数据管理的精度与效率,为决策制定提供了更为坚实的支撑。原创 2024-06-08 10:13:21 · 885 阅读 · 0 评论 -
《DB34/T 4667-2024 工业大数据安全事件应急预案编制指南》解读
《DB34/T 4667-2024工业大数据安全事件应急预案编制指南》不仅是企业应对安全挑战的操作手册,更是推动工业数字化转型和安全文化建设的催化剂。通过深入贯彻执行此标准,企业不仅能够有效抵御外部威胁,更能促进内部管理水平的全面提升,为实现智能制造、智慧运营奠定坚实的安全基础。因此,各相关主体应将此指南视为战略层面的部署,融入企业长期发展规划,共同构筑工业大数据的安全长城,护航数字时代的稳健前行。原创 2024-05-06 17:16:35 · 1008 阅读 · 0 评论 -
深入探索数据血缘与对账
数据血缘与数据对账是构建高效、可靠数据治理体系不可或缺的两翼。它们不仅有助于降低数据风险,提升数据质量,还促进了业务决策的精准性和时效性。面对日益增长的数据复杂性,企业必须不断投入于数据治理技术与策略的创新,将数据血缘与对账实践深度融合至日常运营中,以此为基,构建数据信任,驱动业务增长与转型。原创 2024-04-29 17:54:49 · 818 阅读 · 0 评论 -
数据血缘(Data Lineage)
数据血缘作为数据治理的核心组件,其价值和影响力正在随着技术的演进和社会需求的提升而不断放大。未来,数据血缘将成为推动数字经济健康发展、保障数据安全与合规、释放数据潜在价值的强有力支撑。原创 2024-04-29 17:45:09 · 1430 阅读 · 0 评论 -
如何拥有可以信任的数据?
虽然这是一个具有挑战性的过程,但它也是有益的,因为高质量的数据可以显著提高企业的长期业务绩效。虽然先进的工具可以在这一过程中提供帮助,但真正确保数据质量成功的是技术熟练的人员和健全的流程的结合。公司的成长和演变,产品的更新,客户改变他们的行为或搬到新的地方,导致数据的快速变化。维护数据质量不是一个人的使命。这涉及教育所有员工了解数据质量的重要性,他们在维护数据质量中的角色,以及数据质量差对商业成果的影响。定期的数据审计和清理是确保您的数据保持相关性和可靠性的关键,这是您的商业决策和战略举措的基石。原创 2024-04-29 14:55:55 · 198 阅读 · 0 评论 -
什么是数据治理?
数据治理是一门学科,它提供了必要的政策、流程、标准、角色和责任,以确保数据作为资产被管理。那么这到底意味着什么?这意味着,如果你需要提高数据质量、确保信息安全、实现主数据管理等,你需要有一个坚实的基础,将所有这些实践联系在一起,并定义和启用所需的流程、工具和资源,以使这些实践成功。更简单点说?数据治理提供了必要的指导,将你的数据作为资产来管理。数据治理研究所:数据治理是信息相关流程的决策权和问责制度,根据商定的模型执行,描述谁可以在什么情况下使用什么方法对什么信息采取什么行动。DAMA。原创 2024-04-29 14:09:38 · 677 阅读 · 0 评论 -
DCMM数据管理能力成熟度评估模型
DCMM(Data Management Capability Maturity Model)是《数据管理能力成熟度评估模型》GB/T 36073-2018国家标准的英文简称,是我国在数据管理领域首个正式发布的国家标准。这一模型旨在为企业、政府机构和其他各类组织提供一个科学、系统化的框架,以评估其数据管理能力的现状,明确提升路径,并通过持续改进推动数据资源的有效利用与价值释放。原创 2024-04-16 08:00:00 · 1382 阅读 · 0 评论