
边缘计算
文章平均质量分 91
deepdata_cn
极深数据,深耕数据行业。
展开
-
联邦学习与边缘计算的融合
在物联网(IoT)快速发展的时代,数以亿计的边缘设备如传感器、智能终端等持续产生海量数据。然而,将这些数据全部传输至云端进行处理,不仅面临高昂的网络带宽成本和较长的传输延迟,还存在严重的隐私泄露风险。在此背景下,联邦学习与边缘计算的融合为物联网数据处理提供了新的解决方案,展现出巨大的应用潜力。原创 2025-06-07 07:30:00 · 455 阅读 · 0 评论 -
云原生边缘计算框架(KubeEdge)
KubeEdge是面向边缘计算场景、专为边云协同设计的云原生边缘计算框架。它在 Kubernetes 原生的容器编排调度能力之上,实现了边云之间的应用协同、资源协同、数据协同和设备协同等能力,完整打通了边缘计算中云、边、设备协同的场景。于 2020 年 9 月晋级为 CNCF 孵化级别的托管项目,具有广泛的应用前景和活跃的社区支持。2024年9月11日,KubeEdge从孵化阶段毕业,标志着其在云原生边缘计算领域得到了广泛认可和成熟发展。原创 2025-04-20 07:30:00 · 1095 阅读 · 0 评论 -
对比云计算,边缘计算的独特价值与发展前景
云计算云计算,从定义上来看,是一种极具创新性的服务模式。它通过互联网这一强大的纽带,为用户提供了按需访问共享资源池的便利。这个资源池犹如一个巨大的 “数字仓库”,里面存放着各种丰富的资源,如功能强大的服务器,它们如同一个个不知疲倦的 “计算引擎”,随时准备为用户处理复杂的计算任务;还有海量的存储空间,能够像一个无尽的 “数据海洋”,容纳用户上传的各类数据。云计算的特点鲜明,其高度集中化的架构设计,就像是一座现代化的中央指挥中心。原创 2025-04-18 07:45:00 · 685 阅读 · 0 评论 -
边缘计算在物联网中的关键作用与典型应用案例
边缘计算本质上是一种将数据处理任务从中心化的云服务器转移到网络 “边缘” 的分布式计算框架。这里所提及的 “边缘”,并非一个模糊的概念,而是精准地指向靠近数据源的地方,例如各类传感器,无论是部署在工厂车间用于监测设备运行状态的振动传感器、温度传感器,还是散布在城市环境中用于监测空气质量的气体传感器;又如智能设备,像智能家居中的智能音箱、智能摄像头,以及工业领域的智能机器人、智能网关等。通过将数据处理的任务下沉至这些边缘设备,能够带来诸多显著优势。最为直观的便是可以显著减少数据传输延迟。原创 2025-04-15 07:45:00 · 1169 阅读 · 0 评论 -
边缘计算框架选型指南
边缘计算是一种将计算资源部署于靠近数据源的网络边缘的计算模式。与传统云计算不同,它并非将所有数据传输至遥远的云端进行处理,而是在数据产生的源头附近就完成部分数据处理与分析工作。通过这种方式,极大地减少了对云端的依赖,不仅降低了数据传输延迟,提升了系统运行效率,还在一定程度上增强了数据隐私保护。原创 2025-03-25 08:00:00 · 1595 阅读 · 0 评论