
RAG
文章平均质量分 91
deepdata_cn
极深数据,深耕数据行业。
展开
-
几个典型 RAG 技术解决方案对比
基于检索的生成(Retrieval-Augmented Generation, RAG)技术已成为自然语言处理(NLP)领域的焦点。传统的生成式模型,如 GPT 系列,虽能生成流畅文本,但在面对需要特定知识的场景时,可能因缺乏外部知识补充而产生 “幻觉” 问题,给出错误或虚构的信息。RAG 技术的出现,创新性地将检索和生成两种方法相结合,打破了这一困境。它能够在生成文本时,实时从外部知识库中检索相关信息,为生成过程提供可靠的知识支撑,显著提高了生成内容的质量与准确性。原创 2025-05-01 07:45:00 · 931 阅读 · 0 评论 -
比较图检索增强生成(Graph RAG)和向量检索增强生成(Vector RAG)
检索增强生成(Retrieval Augmented Generation,RAG)是一项前沿技术,它融合了基于检索的人工智能模型与生成式人工智能模型的优势,能够给出更准确、相关且更具人类语言特征的回复。通过整合这两种方法,RAG 使大型语言模型(LLM)能够访问并利用外部知识库中的最新信息,减少“幻觉”现象或不准确回复的出现。RAG 的核心思想是用有针对性的领域特定信息,来补充大型语言模型中已有的海量知识。这使得模型生成的回复不仅连贯自然,而且以真实、及时的数据为依据。原创 2025-05-01 07:30:00 · 949 阅读 · 0 评论 -
RAG技术在企业知识管理中的应用
1.定义RAG 是一种创新性的方法,它将强大的检索系统与先进的生成模型有机结合。在实际应用中,该技术允许生成模型在生成响应内容时,能够实时参考外部广泛的知识源。这一特性使得生成的输出结果不仅具备高度的准确性,而且与用户输入的上下文紧密相关,能够切实满足用户的实际需求,为用户提供更有价值的信息。2.工作流程输入查询:用户在企业知识管理系统的交互界面提出具体问题或业务请求。例如,客服人员需要解答客户关于产品使用的复杂问题,或者市场调研人员需要了解某一行业最新的市场趋势信息等。原创 2025-04-11 07:30:00 · 993 阅读 · 0 评论 -
RAG 技术核心剖析:检索与生成如何协同运作
RAG(Retrieval-Augmented Generation)是一种结合了信息检索和文本生成的人工智能方法。在当今大数据和人工智能飞速发展的时代,单一的文本生成技术常常面临知识准确性、时效性以及生成内容相关性不足的问题。RAG 技术应运而生,它通过将大规模的外部知识库与强大的语言模型相结合,来提高生成文本的质量、准确性和相关性。这一创新技术为自然语言处理领域带来了新的突破,被广泛应用于多个行业场景中。本文档旨在深入探讨 RAG 技术的核心机制及其在实际应用中的表现,带您全面了解这一前沿技术。原创 2025-04-10 07:45:00 · 860 阅读 · 0 评论 -
对比分析:RAG技术与传统文本生成技术的差异与优势
1.传统文本生成技术基于规则的方法早期尝试使用手工编码的知识库来指导文本生成过程。语言学家和计算机科学家们投入大量精力,将语言的语法规则、语义规则以及特定领域的知识以规则的形式编写进系统。例如在一个简单的故事生成系统中,会设定 “故事开头一般是介绍主人公”“情节发展要有起有伏” 等规则。但实际应用中,这种方法面临诸多挑战。语言的复杂性和不规则性使得规则难以穷尽所有情况。原创 2025-04-10 07:30:00 · 1039 阅读 · 0 评论 -
RAG数据框架(LlamaIndex)
2022年为解决大语言模型与外部知识结合的难题,创始人意识到需开发一个工具让开发者能便捷地将自定义数据集成到语言模型应用中。积极与其他开源项目和工具集成,如与 LangChain 等框架结合,发挥各自优势,为开发者提供更强大的开发体验。LlamaIndex专注于数据框架,可帮助用户轻松地将自定义数据集成到语言模型中,实现 RAG 应用。它提供了多种数据连接器和索引结构,能高效地检索相关信息并结合大语言模型生成答案。支持多种数据源,包括文件、API、数据库等;原创 2025-03-23 07:45:00 · 701 阅读 · 0 评论 -
LLM大模型本地化部署的优势和挑战
2.1 什么是LLM大模型?LLM是基于深度学习的大规模语言模型,通常包含数十亿甚至数千亿参数。这些模型通过海量数据训练,具备强大的语言理解与生成能力,可以完成诸如文本分类、翻译、摘要生成、对话系统等任务。2.2 为什么选择本地部署?● 数据隐私与安全性:敏感数据无需上传至云端,确保信息不外泄。● 定制化需求:针对特定行业或领域进行微调,满足个性化需求。● 实时性与性能优化:本地部署可以减少网络延迟,提升响应速度。● 成本控制:避免长期依赖云服务产生的高额费用。原创 2025-03-05 07:40:29 · 1926 阅读 · 0 评论 -
检索增强型语言模型(OpenScholar by Allen AI)
外接4500万篇论文的数据库,采用检索增强的方法,通过数据存储、bi-encoder检索器、cross-encoder重排序器等组件,从大量文献中筛选出与输入查询语义相关的段落,为LLM生成关键词提供丰富的学术文献依据。由艾伦人工智能研究所(AI2)和华盛顿大学共同开发。面对全球科研论文数量爆炸式增长,科研人员面临严重信息过载,而现有通用AI工具如ChatGPT等在处理科学问题时存在生成幻觉、成本高、参数规模大等缺陷。原创 2025-03-02 07:30:00 · 921 阅读 · 0 评论 -
LLM 增强生成平台(Arguflow)
提供语义搜索和大模型检索增强生成(RAG)功能,能深入理解文本含义,为LLM提供精确的搜索结果,用户可在自有数据集上实现智能搜索和生成,帮助LLM获取更准确的相关信息来生成关键词。采用先进的自然语言处理技术,如集成了OpenAI或Jina的嵌入模型和Qdrant,实现语义向量搜索,结合高效的数据库管理与API接口,对输入数据能高度理解并快速响应查询。原创 2025-03-01 09:41:53 · 658 阅读 · 0 评论 -
自定义RAG用户界面(Kotaemon)
kotaemon由Cinnamon开发开源,提供了一个干净且自定义的RAG用户界面,通过与文档的聊天功能,帮助用户进行问答。兼容多种LLM API供应商,包括OpenAI、Azure OpenAI和Cohere,以及本地模型。支持多用户登录,允许用户将文件组织成公共或私有集合并进行共享,能够处理包括图形和表格在内的多种文档格式,支持多模式文件解析。适用于需要进行文档问答的终端用户,以及希望构建自己的RAG管道的开发者。原创 2025-02-07 07:30:00 · 1451 阅读 · 0 评论 -
开源RAG后端平台(JamAIBase)
JamAIBase集成了嵌入式数据库(SQLite)和嵌入式矢量数据库(LanceDB),具有托管内存和RAG功能。内置LLM、矢量嵌入以及重新排序器编排和管理功能,所有这些都可以通过方便、直观、类似电子表格的UI和简单的REST API访问。支持任何LLM,可结合基于关键字的搜索、结构化搜索和矢量搜索以获得最佳结果。适合不同技术水平的用户进行数据操作和管理,尤其适合需要利用先进的AI能力进行数据处理和分析的用户。原创 2025-02-06 07:30:00 · 1376 阅读 · 0 评论 -
容器化检索增强框架(R2R)
R2R by SciPhi-AI是一个专门的RAG框架,专注于通过迭代细化来改进检索过程。主要特点包括实现新颖的检索算法,支持多步检索过程,与各种嵌入模型和向量存储集成,以及用于分析和可视化检索性能的工具。适合有兴趣突破检索技术界限的开发人员和研究人员,特别是在需要创新检索方法的场景。具有 RESTful API 的容器化检索增强一代 (RAG)。具有生产就绪型功能,包括多模式内容摄取、混合搜索功能、可配置的 GraphRAG 以及用户和文档管理。原创 2025-01-28 07:15:00 · 1069 阅读 · 0 评论 -
高效向量搜索RAG解决方案(Canopy)
Canopy利用Pinecone在高效向量搜索方面的专业知识,提供强大且可扩展的RAG(Retrieval-Augmented Generation)解决方案。包括与Pinecone向量数据库的紧密集成,支持流处理和实时更新,先进的查询处理和重新排序功能,以及管理知识库和版本控制的工具。原创 2025-01-28 07:15:00 · 872 阅读 · 0 评论 -
全流程RAG应用开发平台(Cognita)
Cognita提供统一的平台来构建和部署AI应用程序,是全流程的RAG应用开发平台,与流行机器学习框架和工具集成,内置监控和可观测性功能,支持模型版本管理和实验跟踪。适合希望简化整个机器学习生命周期的组织,特别是在需要端到端AI应用开发和部署的平台的场景。原创 2025-01-24 07:45:00 · 1265 阅读 · 0 评论 -
轻量级高效RAG框架(FlashRAG)
在自然语言处理(NLP)领域,随着知识密集型任务(如问答系统、知识图谱填充、文档生成等)的需求不断增加,传统的语言模型在处理这些任务时可能会因为缺乏足够的外部知识而出现信息不准确或不完整的情况。FlashRAG是一种轻量级且高效的检索增强生成(Retrieval Augmented Generation,RAG)框架。RAG框架的核心是结合信息检索和语言生成技术,以提供更准确、更有针对性的文本生成服务。原创 2025-01-23 07:30:00 · 1055 阅读 · 0 评论 -
RAG检索技术增强
RAG(Retrieval Augmented Generation)技术增强是一种在自然语言处理领域广泛应用的技术手段,主要目的是提升语言生成模型的性能。在面对自然语言处理任务时,首先从外部知识源(如文档库、知识库、数据库等)中检索与任务相关的信息片段,然后利用这些检索到的信息来增强语言生成模型的输出,从而生成更准确、更有针对性的自然语言内容。当接收到一个用户请求(如问题、文本生成主题等),RAG系统会将该请求转换为适合检索的形式,通常是提取关键词或者将其转换为向量表示。原创 2025-01-22 07:15:00 · 1092 阅读 · 0 评论 -
如何利用RAG进行检索系统开发?
RAG(Retrieval Augmented Generation)检索增强生成是一种 AI 框架,它将传统信息检索系统(如搜索和数据库)的优势与生成式大型语言模型 (LLM ) 的功能相结合。通过将您的数据和世界知识与LLM语言技能相结合,生成的内容会更准确、更及时,并且更符合您的特定需求。RAG它的核心在于从用户自有知识源(如数据库、文档库等)中检索相关信息,并将这些信息用于辅助语言模型生成更准确、更有针对性的回答。原创 2025-01-22 07:15:00 · 1106 阅读 · 0 评论 -
面向学术研究的RAG框架(STORM)
STORM by stanfordoval由斯坦福大学开发的面向学术研究的RAG框架,实现了多项创新的RAG算法和技术,重点优化检索机制的准确性和效率,与最先进的语言模型深度集成,配套详尽的文档和研究论文。适合探索RAG技术前沿的学者和从业者,特别是在学术研究和高等教育领域。项目地址:https://github.com/stanfordoval/storm。原创 2025-01-22 07:15:00 · 881 阅读 · 0 评论