
NLP
文章平均质量分 91
deepdata_cn
极深数据,深耕数据行业。
展开
-
生成式对抗网络(GAN)在自然语言处理(NLP)中的应用
生成式对抗网络(Generative Adversarial Networks, GANs)作为深度学习领域中极具创新性的模型,由 Ian Goodfellow 等人于 2014 年首次提出。这一开创性的理念犹如在深度学习的浩瀚星空中点亮了一颗独特的新星。GAN 的核心设计理念极为精巧,它构建了两个相互对立又彼此协作的神经网络,即生成器和判别器,以此来训练生成模型。生成器犹如一位富有创造力的艺术家,尝试生成全新的数据样本;判别器则如同一位严苛的评论家,努力区分真实数据与生成器创作的假数据。原创 2025-04-16 07:45:00 · 779 阅读 · 0 评论 -
轻量级NLP模型设计与应用
当下自然语言处理(NLP)技术已从实验室的前沿研究逐步渗透到人们生活和工作的方方面面。从智能语音助手能够精准识别语音指令并迅速给出回应,到文本翻译系统打破语言壁垒促进跨国交流;从内容推荐引擎依据用户阅读习惯精准推送信息,到智能客服时刻在线高效解答客户疑问,复杂的深度学习模型在这些应用场景中发挥着中流砥柱的作用,成为解决实际问题的核心力量。然而,当将目光投向资源受限的环境时,情况变得棘手起来。原创 2025-04-11 07:45:00 · 934 阅读 · 0 评论 -
端到端的NLP框架(Haystack)
Haystack是一个端到端的 NLP 框架,专门用于构建基于文档的问答系统,是实现 RAG 的理想选择。它提供了数据预处理、文档存储、检索和生成等一系列组件,支持多种语言模型和检索器。提供可视化界面,方便用户进行配置和调试;支持多模态数据,可处理文本、图像等多种类型的数据;具有可扩展性,可根据需求添加自定义组件。2020年在自然语言处理技术快速发展,对高效、易用且灵活的端到端 NLP 框架需求日益增长的背景下,Deepset团队创建了Haystack。原创 2025-03-23 07:30:00 · 1101 阅读 · 0 评论 -
计算语言学标注中介器(CLAM)
Computational Linguistics Annotation Mediator(CLAM)是一个计算语言学应用中介,能将自然语言处理(NLP)命令行应用程序快速透明地转换为RESTful Web服务,终端用户和自动化客户端都能与之交互。用户可上传输入文件,选择特定参数启动应用,并下载和查看应用输出,还能监控应用运行状态。原创 2025-03-08 07:45:00 · 946 阅读 · 0 评论 -
中文文本处理工具包(SnowNLP)
SnowNLP主要用于中文文本处理的工具包,虽然不是专门的标注工具,但提供了一些基本的自然语言处理功能,如词性标注、情感分析等,可以辅助进行数据标注和分析,使用简单,对中文的支持较好。原创 2025-03-08 07:30:00 · 1628 阅读 · 0 评论 -
KAG知识增强生成框架
KAG(Knowledge Augmented Generation)是蚂蚁集团开源的一款知识增强生成框架。基于OpenSPG引擎和大型语言模型,设计了逻辑符号引导的混合推理引擎,将自然语言问题转化为结合语言和符号的问题求解过程,集成了图谱推理、逻辑计算、chunk检索、llm推理四种问题求解过程。用于为专业领域知识库构建逻辑推理和事实性问答解决方案。它能有效克服传统 RAG(检索增强生成)向量相似度计算模型的缺点。通过知识图谱与原始文本块的互索引,能清晰展示知识来源与关联。原创 2025-02-13 07:45:00 · 622 阅读 · 0 评论 -
LLM大语言模型的组成部分
LLM(Large Language Model)大语言模型由输入层将文本转为向量,基于Transformer架构的编码器提取语义与上下文信息,解码器据此生成输出,输出层经Softmax和搜索策略将向量转为最终文本;通过在大规模无监督语料上预训练学习通用知识,再针对具体任务用有标注数据微调;记忆与缓存机制处理长序列并提高效率,评估模块用困惑度等指标衡量性能,优化模块据此调整超参数、改进结构。原创 2025-02-11 07:45:00 · 870 阅读 · 0 评论 -
大语言模型多token预测技术
近年来,大语言模型(LLM)在自然语言处理领域取得了突破性进展,凭借其强大的语言理解和生成能力,在各种NLP任务中展现出惊人的性能。传统的基于下一个token预测的训练方法虽简单有效,但在获取语言、世界知识和推理能力方面效率不高。且这种方法使模型过于关注局部模式,忽视了“困难”的决策,导致当前先进的下一个token预测器需要比人类儿童多几个数量级的数据才能达到相同的语言水平。人类儿童在学习语言时使用的训练数据远少于大型语言模型,但其学习效率和语言理解能力却非常高。原创 2025-02-08 08:00:00 · 1382 阅读 · 0 评论 -
百度依存句法分析工具(DDParser)
DDParser由百度基于大规模标注数据和深度学习平台飞桨研发的中文依存句法分析工具。它采用简单易理解的标注体系,支持一键安装部署及调用,适合开发者快速学习及使用。能够直接获取输入文本中的关联词对、长距离依赖词对等信息。其训练数据丰富,覆盖多种场景,在随机数据上的准确率较高,并且输入层加入了词的字符级别表示,缓解了因粒度不同带来的效果下降问题。支持 Python 一键安装,使用方便。用户可以通过进行安装,然后使用导入并创建实例来解析文本,如,最后使用来进行句法分析。原创 2025-01-27 07:30:00 · 1123 阅读 · 0 评论 -
基于双向变换器的编码表示(BERT)
BERT(Bidirectional Encoder Representations from Transformers)是一种预训练语言模型,由谷歌在2018年提出。它在自然语言处理(NLP)领域引起了巨大的变革。在BERT之前,许多语言模型主要是单向的,例如从左到右或者从右到左处理文本序列。而BERT的双向特性使得它能够同时考虑文本中单词的前后文信息,从而更好地理解文本的语义。原创 2025-01-26 06:45:00 · 2011 阅读 · 0 评论 -
深度双向语言模型(ELMo)
ELMo(Embeddings from Language Models)是由艾伦人工智能研究所(Allen Institute for AI)开发的一种深度双向语言模型。它在自然语言处理(NLP)领域是一个重要的进展,主要用于生成词向量,这些词向量能够更好地捕捉单词在上下文中的语义信息。在ELMo出现之前,传统的词向量(如Word2Vec和GloVe)是静态的,即一个单词在任何语境下都有相同的向量表示,这无法很好地适应单词在不同句子中的语义变化。原创 2025-01-26 06:30:00 · 799 阅读 · 0 评论 -
BERT vs ELMo
BERT和ELMo作为自然语言处理领域两个大神,自诞生以来,便以其独特的技术架构与卓越的表现,在推动该领域发展的进程中扮演着举足轻重的角色。在BERT横空出世之前,自然语言处理领域虽已取得一定进展,但传统词嵌入方法,如Word2Vec和GloVe,却有着难以忽视的短板。它们赋予每个单词的是静态的向量表示,无法依据单词所处上下文的不同而灵动变化,这使得模型在面对复杂语义场景时往往力不从心。几乎同一时期,ELMo也以其独特的魅力崭露头角。原创 2025-01-26 06:30:00 · 1624 阅读 · 0 评论 -
掩码语言模型(MLM)
掩码语言模型(Masked Language Model,MLM)是自然语言处理(NLP)中一种重要的预训练任务,尤其在基于深度学习的语言模型中被广泛使用。它是一种自监督学习技术,让模型学习语言的语义和语法规则。原创 2025-01-25 07:45:00 · 913 阅读 · 0 评论 -
下一句预测(NSP)
下一句预测(Next Sentence Prediction,NSP)是自然语言处理(NLP)中的一个任务。它主要是判断给定的两个句子在原文中是否是相邻的句子。例如,对于句子A和句子B,模型需要预测句子B是否是句子A在文本中的下一句。早期NLP任务主要关注单词层面的预测和理解,如传统的词袋模型、ngram模型等,随着对语言理解的深入,研究人员开始意识到句子之间的关系对于理解文本整体含义的重要性。原创 2025-01-25 07:30:00 · 1543 阅读 · 0 评论 -
自然语言生成可视化图表(VizGPT)
VizGPT是一个创新性的开源项目,它的核心在于构建了自然语言处理和数据可视化之间的桥梁。通过利用先进的自然语言处理技术,它能够理解用户输入的文本指令,并将这些指令转换为对应的可视化图表,帮助用户更直观地理解数据和信息。VizGPT通过聊天界面轻松创建和调整图表。利用GPT模型的强大功能,允许用户使用自然语言描述他们想要的图表,根据上下文逐步编辑可视化,无需再为理解复杂查询语法而头疼。原创 2025-01-19 08:00:00 · 1034 阅读 · 2 评论 -
自然语言处理库(PaddleNLP)
PaddleNLP是百度开发的自然语言处理库,提供了丰富的预训练模型和工具,可用于文本生成、情感分析、知识图谱等多种自然语言处理任务,支持分布式训练和高性能推理,在工业界和学术界都有广泛的应用。原创 2024-12-19 07:30:00 · 714 阅读 · 0 评论 -
应用深度学习的自然语言处理框架(AllenNLP)
AllenNLP是一个用于自然语言处理的深度学习框架,提供了便捷的工具和接口,帮助开发者快速搭建和训练各种自然语言处理模型,如命名实体识别、情感分析、机器翻译等,支持多种深度学习架构和技术,包括循环神经网络、卷积神经网络、注意力机制等。AllenNLP基于PyTorch构建的Apache 2.0许可的自然语言处理研究库,由艾伦人工智能研究所(Allen Institute for AI)开发。原创 2024-12-17 07:45:00 · 1044 阅读 · 0 评论 -
中文词法分析工具包(THULAC)
THULAC(THU Lexical Analyzer for Chinese)是一个中文词法分析工具包,具有中文分词和词性标注功能。它利用大规模人工分词和词性标注中文语料库训练而成,模型性能强大,处理速度快。由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包。原创 2024-11-23 07:45:00 · 956 阅读 · 0 评论 -
语法分析器生成工具(ANTLR)
ANother Tool for Language Recognition是一个语法分析器生成工具,但可以用于自定义语义分析。用户可以根据自己定义的语法规则文件,生成对应的语法分析器,然后对输入的文本进行分析,提取出其中的语义信息。在一些需要对特定领域的文本进行深入分析的场景中,开发者可以使用 ANTLR 定义符合该领域语言特点的语法规则,从而实现准确的语义分析。例如,在编程语言的编译器开发、特定格式文件的解析等方面应用广泛。原创 2024-10-13 07:30:00 · 864 阅读 · 0 评论 -
机器翻译(Hugging Face)
Hugging Face 对 Transformer 架构进行了开源实现,提供了大量预训练的机器翻译模型。这些模型可以直接使用,也可以在其基础上进行微调以适应特定的翻译任务。它支持多种编程语言,如 Python 等,并且与主流的深度学习框架(如 PyTorch 和 TensorFlow)对于想要快速搭建机器翻译系统,或者利用预训练模型进行迁移学习的开发者来说非常方便,可以节省大量的训练时间和资源。原创 2024-10-10 07:45:00 · 1353 阅读 · 0 评论 -
机器翻译(NiuTrans)
NiuTrans由东北大学自然语言处理实验室开发,使用 C++/C 编程语言进行编码,具有运行速度快、使用内存少等优点。支持基于(层次)短语的模型以及多种内置解码算法,用户可以根据自己的需求选择合适的算法。适用于对性能要求较高、资源受限的环境,例如一些嵌入式系统或者对实时性要求较高的翻译应用。原创 2024-10-09 07:45:00 · 1536 阅读 · 0 评论 -
自然语言处理工具(Neural Monkey)
Neural Monkey是一个基于 TensorFlow 的开源工具,由查尔斯大学的形式与应用语言学研究所开发。它提供了较高层次的抽象,方便开发者快速构建序列到序列的神经网络模型,可用于机器翻译、句子分类等自然语言处理任务。该工具具有良好的可扩展性和可定制性,开发者可以根据自己的需求对模型进行修改和优化。原创 2024-10-08 07:45:00 · 1099 阅读 · 0 评论 -
意图识别和实体提取工具(SnipsNLU)
SnipsNLU是一个开源的自然语言理解(NLU) Python库,它允许开发者在自己的应用中集成自然语言处理功能,以创建智能、注重隐私的语音助手。SnipsNLU的核心功能包括意图识别和实体提取。意图识别是理解用户查询中包含的动作或意图,而实体提取则是从用户语句中提取关键信息,例如日期、地点、时间等。适用于构建智能语音助手、聊天机器人等应用,能够帮助这些应用理解用户的意图,从而提供更加准确的回答或操作。SnipsNLU提供了命令行界面,可以轻松地训练和测试NLU引擎。原创 2024-10-06 07:45:00 · 1378 阅读 · 0 评论 -
2 维向量模型(Awesome2Vec)
Awesome2Vec是一个开源项目,收集并分类了大量的 2 维向量相关的工具、论文、教程和代码实现。核心是 2 维向量模型,通过对大量文本数据进行学习,将词汇或更复杂的语义单元映射到高维空间中的连续向量,使得词汇之间的语义关系可以通过简单的数学运算来度量。Awesome2Vec 项目不仅包括经典的词嵌入模型,如 Word2Vec 和 GloVe,还涵盖了最新的预训练模型(如 BERT、RoBERTa)以及多模态表示方法。通过这个资源库,你可以快速找到适合你的应用场景的模型,并且了解其背后的技术原理。原创 2024-10-06 07:30:00 · 1719 阅读 · 0 评论 -
自然语言分析包(Stanza)
Stanza是斯坦福大学开源的 Python 自然语言分析软件包,包含了可以在处理流程中使用的多种工具,能够将包含人类语言文本的字符串转换为句子和单词列表,生成单词的基本形式、词性、词法特征、句法结构依赖性解析以及识别命名实体等。分析包由高度精确的神经网络组件构建而成,支持多种语言,并且在多种语言上都有较好的性能表现。该工具包被设计为使用“通用依赖”关系,可以在 70 多种语言之间并行处理。原创 2024-10-05 07:45:00 · 1415 阅读 · 0 评论 -
依存关系解析库(Redshift)
Redshift是一个专为自然语言处理设计的依存关系解析库,由 Python 编写,并利用了 Cython 以提高性能。虽然目前处于维护模式,但仍能提供快速和准确的解析服务,尤其适用于已预处理的文本。依存关系分析作用是分析句子中词语之间的依存关系,即一个词对另一个词的依赖或修饰关系。例如,在 “我喜欢这本书” 中,“喜欢” 是核心动词,“我” 是 “喜欢” 的主语,“这本书” 是 “喜欢” 的宾语。依存关系分析有助于理解句子的语义和逻辑结构,对于机器翻译、文本生成等任务有重要意义。原创 2024-10-04 07:30:00 · 1208 阅读 · 0 评论 -
自然语言处理工具(Spacy)
Spacy是一个开源的自然语言处理Python库,支持多种语言的处理,提供了高效的句法分析功能以及其他自然语言处理功能,如词性标注、命名实体识别等。具有较高的效率和准确性,其依存关系分析功能可以帮助用户快速准确地理解句子的结构和词语之间的关系。原创 2024-10-03 07:45:00 · 1037 阅读 · 0 评论 -
自然语言处理工具包(NLTK)
Natural Language Toolkit(NLTK)是一个非常流行的自然语言处理工具包(Python),提供了多种自然语言处理功能,包括句法分析。它在学术界和研究领域广泛使用,拥有丰富的文档和教程资源。提供了基于规则的句法分析器以及一些预训练的模型,可以进行词性标注、句法分析等任务。用户可以根据自己的需求定义句法规则,对文本进行分析。原创 2024-10-03 07:30:00 · 1149 阅读 · 0 评论 -
开源语言技术平台(LTP)
LTP由哈工大开源,是一系列中文自然语言处理工具的集合,提供了分词、词性标注、命名实体识别、语义角色标注、依存句法分析等多种功能。LTP功能较为全面,对于中文文本的处理能力较强,其依存句法分析功能可以帮助用户分析句子中词语之间的依存关系,为进一步的文本理解和分析提供支持。原创 2024-10-02 07:45:00 · 2468 阅读 · 0 评论 -
语义分析工具(OpenHowNet)
OpenHowNet由清华大学自然语言处理实验室(THUNLP)开发。它在传统的 HowNet 基础上进行了扩展和更新,使用“概念”和“属性”来描述词的意义,每个概念都有具体的意义和上下文,属性描述概念间的关联。利用深度学习模型自动标注数据,提供了简洁易用的 API,方便开发者将其集成到应用或研究中。可用于自然语言理解、文本生成、情感分析等,能帮助 AI 更好地理解人类语言,提升聊天机器人、问答系统、语音识别等应用的理解能力,也可以辅助分析文本的情感倾向。原创 2024-10-02 07:30:00 · 1390 阅读 · 0 评论 -
自然语言处理工具包(Stanford CoreNLP)
Stanford CoreNLP:斯坦福大学开发的自然语言处理工具包,提供了词性标注、命名实体识别、依存句法分析等功能,可以用于从文本中抽取知识并进行预处理,为构建知识图谱提供基础数据。原创 2024-10-01 07:45:00 · 1234 阅读 · 0 评论 -
中文分词器(jcseg)
jcseg是基于 mmseg 算法的一个轻量级 Java 中文分词器,同时集成了关键字提取、关键短语提取、关键句子提取和文章自动摘要等功能。它提供了多种切分模式,包括简易模式、复杂模式、检测模式、检索模式、分隔符模式和 NLP 模式,以满足不同的应用场景需求。可以从官方网站或开源代码托管平台获取 jcseg 的 JAR 包或源代码。将 jcseg 添加到你的 Java 项目中。如果是使用 Maven 或 Gradle 等构建工具,可以在项目配置文件中添加相应的依赖。原创 2024-09-29 07:30:00 · 883 阅读 · 0 评论 -
中文分词工具包(pkuseg)
pkuseg是由北大开源的基于 Python 的中文分词工具包,由北京大学语言计算与机器学习研究组研制推出。不同于以往的通用中文分词工具,它致力于为不同领域的数据提供个性化的预训练模型,目前支持新闻领域、网络文本领域和混合领域的分词预训练模型,用户也可以使用全新的标注数据进行训练,以获得更高的分词准确率。原创 2024-09-28 07:45:00 · 951 阅读 · 0 评论 -
中文分词工具包(IKAnalyzer)
IKAnalyzer是一个开源的、基于 Java 语言开发的轻量级中文分词工具包。它采用了特有的“正向迭代最细粒度切分算法”,支持细粒度和智能分词两种切分模式,具有较高的分词速度和较小的内存占用,同时支持用户词典扩展定义。在 Maven 项目中添加相关依赖后,即可使用 IKAnalyzer 进行中文分词操作。作为一个基于 Java 语言开发的工具包,它可以很方便地集成到各种 Java 项目中,与其他的 Java 技术和框架进行配合使用。原创 2024-09-28 07:30:00 · 1023 阅读 · 0 评论 -
中文分词库(sego)
sego是一个 Go 语言的中文分词库。词典用双数组 trie(double-array trie)实现,分词器算法为基于词频的最短路径加动态规划。支持普通和搜索引擎两种分词模式,支持用户词典和词性标注,可运行 jsonrpc 服务,分词速度较快。早期为 Go 语言开发者提供了一种高效的中文分词解决方案。它的出现满足了 Go 语言在中文自然语言处理方面对准确分词的需求,尤其是在处理大量中文文本数据时,其性能优势逐渐受到关注。原创 2024-09-27 07:45:00 · 1122 阅读 · 0 评论 -
汉语处理包(HanLP)
HanLP是一个由模型与算法组成的 Java 汉语言处理包,由大快搜索主导并完全开源。它不仅提供中文分词功能,还具备索引全切分模式、用户自定义词典、兼容繁体中文、词性标注、命名实体识别、关键词提取、自动摘要等众多自然语言处理功能。需要先下载相关的模型文件,然后使用相应的 API 进行文本处理。例如,使用其提供的中文分词功能时,可以先初始化分词器,然后对文本进行分词操作。原创 2024-09-27 07:30:00 · 1042 阅读 · 0 评论 -
jieba中文分词
名词相关:n:名词,表示人、事物、地点、抽象概念等的名称,例如“苹果”“学校”“友谊”等。nr:人名,如“张三”“李白”等。ns:地名,像“北京”“上海”“杭州”等。nt:机构团体,比如“联合国”“阿里巴巴公司”等。nz:其他专名,如特定的事件名称、品牌名称等,“五四运动”“华为”等。ng:名语素,名词性语素,是构成名词的语素成分。动词相关:v:动词,表示动作、行为、状态的变化等,例如“跑”“吃”“思考”等。vd:副动词,直接作状语的动词,兼具动词和副词的特点。vn。原创 2024-09-26 07:45:00 · 1067 阅读 · 0 评论