
数据库
文章平均质量分 90
deepdata_cn
极深数据,深耕数据行业。
展开
-
图数据库与关系型数据库的全面对比:何时该选谁?
在数据库领域,关系型数据库长期占据主导地位,以其严谨的表结构、强大的事务处理能力,成为众多企业数据管理的基石。然而,随着数据量的爆炸式增长以及数据关系复杂度的提升,图数据库作为一种新兴力量崭露头角,为处理复杂关系数据提供了新的思路与方法。本文将从数据模型、存储方式、查询语言、事务处理等多个维度,深入对比图数据库和关系型数据库,并结合电商订单管理、知识图谱构建等具体业务场景,帮助读者清晰把握两者的适用边界,为企业数据库选型提供全面参考。原创 2025-06-08 07:30:00 · 694 阅读 · 0 评论 -
图数据库的查询语言:Gremlin与Cypher的对比与应用
传统的关系型数据库在处理复杂关联数据时往往显得力不从心,而图数据库因其独特的图结构,能够更好地处理和表示数据之间的复杂关系,近年来受到了广泛的关注和应用。在图数据库领域,查询语言是开发者与数据库进行交互的关键工具,其中Gremlin与Cypher是两种最为常用的查询语言。原创 2025-05-25 07:45:00 · 1994 阅读 · 0 评论 -
云端数据仓库(HashData)
HashData成立于2016年2月,总部位于中国上海,是国内首批专注于云原生数据仓库研发的高新技术企业。创始团队汇聚了来自Oracle、华为、EMC等全球顶尖科技公司的资深专家,核心成员平均拥有15年以上分布式系统、数据库内核及云计算领域的技术积累。 目前,HashData已服务超过200家行业头部客户,覆盖金融、政务、运营商、能源、互联网等领域,并与阿里云、腾讯云、华为云等主流云厂商达成深度合作,成为国内云原生数据仓库领域的标杆企业。原创 2025-05-25 07:30:00 · 741 阅读 · 0 评论 -
构建基于向量数据库的智能问答机器人全攻略
智能问答机器人已成为提升用户体验、提高工作效率的重要工具。基于向量数据库的智能问答机器人能够快速、准确地回答用户问题,为用户提供高效的服务。原创 2025-05-24 07:45:00 · 987 阅读 · 0 评论 -
AI 制药领域的 “秘密武器”:向量数据库驱动药物研发新突破
向量数据库作为 AI 制药的核心基础设施,正在重新定义药物研发的范式。从加速靶点发现到优化临床试验设计,其应用价值已在多个治疗领域得到验证。然而,技术的发展也面临诸多挑战:数据隐私与合规性问题亟待解决,向量模型的可解释性需进一步提升,跨平台数据标准尚未统一。未来,随着联邦学习、可信计算等技术的融合应用,向量数据库有望突破技术瓶颈,为攻克癌症、神经退行性疾病等重大疾病提供更强大的工具,推动人类健康事业迈向新的高度。原创 2025-05-04 07:30:00 · 857 阅读 · 0 评论 -
开源分布式数据库(TiDB)
TiDB是由PingCAP 开发的开源分布式数据库,兼容 MySQL 协议,集成了 HTAP(混合事务和分析处理)的能力,能够同时处理在线事务和实时分析任务。2015 年,TiDB 在 GitHub 创建,2025 年,TiDB 已来到 v8 版本,整体架构趋于稳定。从 TiDB v8.0.0 开始,TiProxy 成为正式功能,并集成到 TiUP 组件中;由 TiUP 默认部署的 Prometheus 版本升级到 2.49.1。原创 2025-05-02 07:45:00 · 1222 阅读 · 0 评论 -
向量数据库助力多模态数据检索
在数字技术飞速发展的时代,每天产生的数据量特别惊人。全球每天新产生的数据加起来超过 50ZB,这相当于 5 亿个 1TB 硬盘才能装得下。这些数据不只是数量多,类型也很丰富,有文字、图片、声音、视频等等,它们混在一起,就像一团乱麻。怎么能又快又准地从这么多不同类型的数据里找到我们想要的东西,成了人工智能和大数据领域的大难题。不过别担心,向量数据库的出现,给这个难题带来了全新的解决办法,彻底改变了我们查找数据的方式。原创 2025-04-29 07:45:00 · 782 阅读 · 0 评论 -
MPP架构数据库在大数据分析领域的核心作用
在大数据时代,数据规模呈爆炸式增长,传统数据库架构已难以满足海量数据存储与高效处理的需求。MPP(Massively Parallel Processing,大规模并行处理)架构数据库应运而生,凭借其独特的分布式架构设计,通过多个节点并行处理数据,为大数据分析提供了强有力的支撑,成为大数据分析领域的核心技术引擎。原创 2025-04-29 07:30:00 · 1026 阅读 · 0 评论 -
向量数据库在物联网设备管理中的应用
在万物互联的时代浪潮下,物联网(IoT)技术正以前所未有的速度蓬勃发展。从智能工厂的自动化设备,到城市中星罗棋布的传感器,再到千家万户的智能家居产品,全球连接到互联网的智能设备数量呈指数级增长。这些设备不仅持续不断地收集海量数据,还通过网络实现交互与控制,构建起一个庞大而复杂的数据生态系统。据统计,全球物联网设备产生的数据量预计在未来几年将达到ZB级别。然而,数据规模的爆炸式增长也带来了严峻挑战:如何高效存储、快速检索并深度分析这些高维度、多模态、实时性强的数据,成为了物联网技术持续发展亟待突破的瓶颈。原创 2025-04-27 07:30:00 · 866 阅读 · 0 评论 -
传统数据库与新兴向量数据库的对比分析
在信息技术飞速发展的当下,数据正以前所未有的速度产生和积累。据统计,全球每天产生的数据量已达数万亿字节,企业与组织对数据存储和处理的需求也日益增长。从早期基于结构化查询语言(SQL)的关系型数据库,到如今专为处理高维数据而生的向量数据库,不同类型的数据库技术在多样化的应用场景中应运而生。传统数据库巨头如 Oracle、MySQL 等,凭借多年的技术积累和成熟的生态体系,在众多领域占据主导地位;原创 2025-04-26 07:45:00 · 991 阅读 · 0 评论 -
MPP架构数据库的关键技术与创新点
MPP 架构采用 “无共享(Shared Nothing)” 设计理念,每个节点都拥有独立的 CPU、内存、存储系统和操作系统,节点间通过高速网络(如 InfiniBand 或 100G 以太网)进行通信。当执行复杂查询任务时,MPP 数据库将主任务拆分为多个子任务,每个子任务被分配至不同节点并行处理,最终将各节点的处理结果汇总返回。这种分布式处理模式打破了单机系统的性能天花板,使数据库处理能力与节点数量呈线性增长关系。原创 2025-04-25 07:45:00 · 1538 阅读 · 0 评论 -
向量数据库在推荐系统中的应用与实践
个性化推荐系统目前已然成为互联网产品提升用户体验、增加用户粘性的核心竞争力。传统的推荐算法,如协同过滤、基于内容的推荐算法等,在互联网发展初期为用户提供了一定程度的个性化服务,帮助用户从繁杂的信息中快速找到感兴趣的内容。然而,随着用户数量的不断攀升、商品种类的日益丰富,以及用户需求的愈发多样化,这些传统算法在处理大规模高维数据时逐渐暴露出局限性,难以满足用户日益增长的个性化需求。近年来,向量数据库作为一种新型的数据存储和处理技术,凭借其在处理大规模高维数据方面的卓越性能,为推荐系统的发展带来了新的契机。原创 2025-04-25 07:30:00 · 698 阅读 · 0 评论 -
MPP架构数据库与AI融合的探索与实践
IDC 预测,到 2025 年全球数据总量将达 175ZB,如此庞大的数据规模对企业的数据存储与处理能力提出了前所未有的挑战。传统单机数据库在面对 PB 级数据时,无论是查询响应速度还是系统扩展性都显得力不从心,而大规模并行处理(Massively Parallel Processing, MPP)架构数据库凭借其独特优势,成为企业处理海量数据的核心工具。与此同时,人工智能(Artificial Intelligence, AI)技术的蓬勃发展,如机器学习、深度学习等,为数据分析开辟了新的路径。原创 2025-04-24 07:30:00 · 979 阅读 · 0 评论 -
向量数据库核心索引技术FLAT、HNSW、IVF深度解析
随着大数据和人工智能技术的发展,处理大规模高维数据成为了一个重要课题。向量数据库作为一种专门用于存储和检索高维向量数据的系统,在图像识别、自然语言处理等多个领域展现出了巨大的潜力。为了提高向量搜索的速度与准确性,研究人员开发了多种高效的索引结构。本文将深入探讨三种广泛使用的向量数据库索引技术:FLAT(Flat Index)、HNSW(Hierarchical Navigable Small World Graphs)以及IVF(Inverted File Index),并分析它们各自的特点及适用场景。原创 2025-04-24 07:45:00 · 1272 阅读 · 0 评论 -
向量数据库(Vector DB)
向量数据库的起源可以追溯到十多年前,当时深度神经网络快速发展,对非结构化和高维数据的处理需求不断增加,向量搜索技术也随之发展和优化。Facebook开源的FAISS插件库是早期向量数据库的代表,主要应用于推荐系统等相似性推荐领域。随着向量检索需求的增长,一些标准化数据库产品开始集成向量特性,如Elastic Search、PostgreSQL和Redis等,但在性能和适用场景上存在局限性。ChatGPT等大规模语言模型的爆火,让向量数据库成为AI领域的焦点,在机器学习和大模型预训练中发挥出得天独厚的优势。原创 2025-02-23 07:45:00 · 1136 阅读 · 0 评论 -
大规模密集向量相似度搜索和聚类库(FAISS)
FAISS(Facebook AI Similarity Search)是由Meta的基础人工智能研究团队开发的一个用于高效处理大规模密集向量相似度搜索和聚类任务的开源库。FAISS的发展历程如下:FAISS起源于Meta的AI研究需求。当时,随着人工智能和机器学习的兴起,特别是在处理像Facebook每天海量的图片、视频等多媒体数据时,需要一种高效的方法来进行大规模密集向量的相似度搜索和聚类。传统的数据库和搜索技术难以满足这些需求,于是Meta的FAIR团队开发了FAISS。原创 2025-02-23 07:30:00 · 1063 阅读 · 0 评论 -
向量数据库(Chroma)
Chroma 由计算机科学家和机器学习工程师创立,是一个相对较新的开源向量数据库项目。其发展目标是为开发者提供一个简单、高效且易于集成的向量数据库解决方案,以满足日益增长的人工智能和机器学习应用对向量数据存储和检索的需求。自推出以来,凭借其易用性和良好的性能,在开源社区中逐渐获得了一定的关注和认可,持续进行功能更新和性能优化。原创 2025-02-16 08:00:00 · 870 阅读 · 0 评论 -
深入比较Chroma和Milvus向量数据库
Chroma和Milvus都是向量数据库,在人工智能和机器学习领域,可用于存储、检索和管理高维向量数据。原创 2025-02-14 07:30:00 · 744 阅读 · 0 评论 -
向量数据库(Weaviate)
2015年,有一篇介绍将单词转换为词嵌入的机器学习算法文章了解到词嵌入概念。2016年,Weaviate的理念开始孕育,其创始人在参加谷歌开发者专家计划活动时受到启发,思考能否用一种新的方式存储和查询数据,让机器自动理解数据概念,而无需人为统一命名约定和标准。2017年,相关人员对语义存储数据对象的概念进行验证,包括能否通过超空间获取单词上下文、通过计算一组单词的质心来保持语义意义、能否在不重新训练机器学习模型的情况下快速完成等。原创 2025-02-16 07:30:00 · 986 阅读 · 0 评论 -
向量数据库(MyScale)
墨奇科技团队在数据库技术选型时,意识到传统专有向量数据库如Pinecone、Zilliz、Chroma等虽向量检索性能优秀,但处理通用数据能力不足;而传统数据库加外挂模块如pgvector等,通用性有一定提升,但向量性能欠佳。团队敏锐洞察到市场痛点,最终选择以高性能的列存分析数据库ClickHouse作为基础进行改造。同时对向量化的算法、系统以及 SQL 与向量的联合查询和存储进行了深入优化。原创 2025-02-14 08:00:00 · 636 阅读 · 0 评论 -
深入比较Weaviate和MyScale向量数据库
向量数据库是一种专门用于存储和管理向量数据,并支持高效的向量相似性搜索的数据库系统。将文本、图像、音频等各种类型的数据通过特定的算法和模型转化为向量形式。例如,对于文本数据,可使用词嵌入、句嵌入等技术将词语或句子映射为低维向量空间中的向量;对于图像数据,通过卷积神经网络等提取图像的特征向量。为存储的向量建立索引结构,以便快速进行相似性搜索。常见的索引结构有KD树、球树、哈希表等,以及一些专门为向量搜索设计的索引,如局部敏感哈希(LSH)、乘积量化(PQ)等。原创 2025-02-16 08:30:00 · 595 阅读 · 0 评论 -
开源向量数据库(Milvus)
Milvus 是由 Zilliz 开发的一款开源向量数据库,也被称为向量搜索引擎,在人工智能、机器学习等领域发挥着重要作用。2019年,Zilliz团队开始研发Milvus,目的是解决人工智能和机器学习领域中大规模向量数据的存储和快速检索难题。2020年3月,Milvus正式开源,凭借其高性能的向量搜索能力和易用性,迅速吸引了开发者和企业的关注,在开源社区崭露头角。2023年针对企业用户的需求,推出了企业级版本,提供了更高级的安全功能、性能优化和技术支持,满足企业在生产环境中的严格要求。原创 2025-02-13 07:30:00 · 935 阅读 · 0 评论 -
向量数据库(Pinecone)
Pinecone是一款基于云服务的全托管向量数据库,专为处理和搜索高维向量数据而设计,在人工智能和机器学习应用中发挥着重要作用。在人工智能领域,许多非结构化数据(如图像、文本、音频等)经过深度学习模型处理后会被转换为高维向量,这些向量能够捕捉数据的语义信息和特征。Pinecone的核心功能就是高效地存储这些向量数据,并通过近似最近邻搜索(ANN)算法,快速找出与给定查询向量最相似的向量。原创 2025-02-02 08:00:00 · 987 阅读 · 0 评论 -
向量数据库(Qdrant)
Qdrant是一个向量数据库,专门用于存储、搜索和管理高维向量。它的主要目标是为基于向量相似度搜索的应用提供高效的存储和检索解决方案,这些应用包括但不限于人工智能、机器学习、自然语言处理等领域。例如,在语义搜索中,Qdrant可以帮助找到与给定查询向量在语义上最相似的文档向量;在图像识别中,它可以存储图像特征向量,并快速检索相似图像的特征向量。原创 2025-01-24 07:45:00 · 1580 阅读 · 0 评论 -
嵌入式分析型数据库(DuckDB)
DuckDB是一款集轻量级、高性能于一体的嵌入式分析型数据库。在单机内存不断增大以及 SSD 存储逐渐普及的背景下,大部分数据处理工作可以在单机上完成,且很多 OLAP(在线分析处理)场景也能在单机上进行。DuckDB 就是为了满足这种在单机环境下进行高效数据分析的需求而诞生的。它是荷兰 CWI 数据库组的一个项目,学术气息浓厚,架构清晰,适合学习和研究。原创 2024-10-01 07:30:00 · 2181 阅读 · 0 评论 -
开源数据湖解决方案对比
选择合适的开源数据湖方案需根据企业的具体需求、现有的技术栈、以及对未来扩展性的考虑。Delta Lake在事务性和Spark集成方面表现出色,适合需要高度一致性和已有Spark基础的企业;Apache Iceberg凭借其广泛的兼容性和强大的Schema管理能力,适合多引擎并存且对Schema演变有严格要求的场景;而Apache Hudi则在实时数据处理和增量更新方面具有明显优势,适合需要高频数据更新和实时分析的业务。最终决策应综合考量技术特点、社区支持、以及长期维护成本等因素。原创 2024-08-24 07:30:00 · 1229 阅读 · 0 评论 -
数据湖仓(Data lakehouse)
是一种结合了数据湖和数据仓库优势的新型数据架构。Data lakehouse 是一种将数据湖的灵活性和数据仓库的易用性、规范性、高性能结合起来的新型融合架构。它能够在用于数据湖的低成本存储上,实现与数据仓库中类似的数据结构和数据管理功能,让数据能够在数据湖和数据仓库之间无缝集成和自由流转,帮助用户直接利用数据仓库的能力解决数据湖中的数据分析问题,同时充分利用数据湖的数据管理能力提升数据价值。原创 2024-08-22 07:30:00 · 1353 阅读 · 0 评论 -
数据湖(Data Lake)
在当今数据驱动的时代,企业对数据的管理和分析需求日益增长,数据湖(Data Lake)作为一种先进的数据管理架构,正逐渐成为企业数据战略的核心组成部分。本文旨在深入探讨数据湖的基本概念、核心特性、与传统数据仓库的区别,以及其在现代企业中的应用价值。原创 2024-08-21 07:30:00 · 1728 阅读 · 0 评论 -
数据湖和数据仓库
数据湖的数据治理需覆盖数据的全生命周期,包括但不限于数据采集的规范性、数据清洗的有效性、数据分类的逻辑性、存储架构的合理性以及数据审计的严格性。特别是对于拥有大规模数据集、处理多类型数据、追求快速数据集成与分析、需实时数据处理能力,以及在数据价值探索中寻求突破的团队,如数据分析专家、数据科学家、AI研究人员及企业大数据部门,数据湖提供了理想的基础设施与工具集,赋能数据驱动的决策制定与创新实践。随着技术的不断演进,数据湖与数据仓库的概念不再严格对立,而是趋向于一种互补与融合的发展态势。原创 2024-08-21 07:45:00 · 824 阅读 · 0 评论 -
数据仓库 vs 数据集市
数据仓库(Data Warehouse)和数据集市(Data Mart)原创 2024-08-20 07:45:00 · 2019 阅读 · 0 评论 -
数据库 vs 数据仓库
数据库和数据仓库并不是非此即彼的关系,其实是数据管理进化的两个阶段。随着业务的发展,可能需要将多个操作型数据库中的数据集成到一个统一的数据仓库中,以提供全面的业务视图。数据仓库通常包含历史数据,这有助于分析趋势和模式,而操作型数据库通常只保留当前数据。数据仓库针对分析查询进行了优化,而操作型数据库则针对事务处理进行了优化。数据仓库提供了数据的高层次抽象,使得非技术用户也能容易地进行数据分析。原创 2024-08-20 07:30:00 · 1010 阅读 · 0 评论 -
云数据仓库(Snowflake)
Snowflake 是一种云数据仓库,它在云平台上提供了快速、灵活且易于使用的解决方案,用于存储和分析大规模的结构化和半结构化数据。Snowflake 于 2014 年公开推出,并在 2020 年 9 月正式上市,是迄今为止最大的软件 IPO 上市公司。原创 2024-08-18 07:45:00 · 1387 阅读 · 0 评论 -
MPP数据库(Vertica)
Vertica 是一款基于列存储的大规模并行处理(MPP)架构的数据库。它由关系数据库大师 Michael Stonebraker(2014 年图灵奖获得者)创建,于 2011 年被惠普收购,成为其核心大数据平台软件。原创 2024-08-18 07:30:00 · 1419 阅读 · 0 评论 -
Cassandra数据库
Cassandra 是一个开源的、分布式、去中心化的数据库系统,具有高度可扩展性和高可用性,旨在处理分布在多台服务器上的大量结构化数据,且没有单点故障。在发展过程中,cassandra 不断完善和优化其功能,逐渐成为流行的 NoSQL 宽表数据库之一,被广泛应用于大规模数据存储、高并发读写等场景。它从 Google 的 Bigtable 中吸取了 LSM 单机引擎的精华,又学习了 Amazon Dynamo 做分布式、管理集群和灾难容错等方面的经验。原创 2024-08-17 07:45:00 · 946 阅读 · 0 评论 -
键值数据库(DynamoDB)
DynamoDB 是亚马逊公司推出的一款完全托管的 NoSQL 对数据库服务。DynamoDB 开创了云原生 NoSQL 数据库领域,具有大规模高性能、无需管理服务器、适合大型企业、全局表等特性,能够在 PB 级规模下实现个位数毫秒延迟,并为普通表提供99.99%的可用性 SLA,为全局表(跨多个 AWS Region 进行跨表复制)提供99.999%的可用性 SLA。原创 2024-08-17 07:30:00 · 604 阅读 · 0 评论 -
MPP 数据库(Greenplum)
MPP 数据库(Greenplum)是业界具有较高性能和性价比的关系型分布式数据库。它在开源的 PostgreSQL 基础上采用 MPP(大规模并行处理)架构,具有强大的大规模数据分析任务处理能力。原创 2024-08-16 07:45:00 · 1849 阅读 · 0 评论 -
大规模并行处理数据库StarRocks
大规模并行处理数据库StarRocks是新一代极速全场景 MPP(大规模并行处理)数据库。它充分吸收关系型 OLAP 数据库和分布式存储系统在大数据时代的优秀研究成果,在业界实践的基础上,进一步改进优化、升级架构,并增添了众多全新功能,形成了全新的企业级产品。自 2021 年 9 月正式开源。从 3.0 版本起正式支持存算分离架构,用户的存储成本能下降 80%,计算节点因无状态,可通过快速弹性、跨可用区部署等方式提高计算的可用性,并且计算资源能够进行物理隔离,按需独立弹性伸缩。原创 2024-08-16 07:30:00 · 890 阅读 · 0 评论 -
ClickHouse数据库
ClickHouse数据库 是一款高性能的列式数据库管理系统,具有出色的数据分析和处理能力。ClickHouse 最早由俄罗斯 IT 公司 Yandex 为 Yandex.Metrica 网络分析服务开发。经过多年的发展,ClickHouse 的开发者和用户已经遍布全球各地。许多头部大厂都在深度使用 ClickHouse 技术,适用于大数据分析、日志分析、数据仓库、实时分析、时序数据分析、数据统计和报表等多种场景。原创 2024-08-15 07:45:00 · 1081 阅读 · 0 评论 -
图形数据库Neo4j
Neo4j 是一个高性能的 NoSQL 图形数据库。它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。它使用图形模型来表示数据,使得数据之间的关系直观且易于查询。原创 2024-08-11 07:45:00 · 790 阅读 · 0 评论 -
多模型数据库(OrientDB)
OrientDB 是一种多模型数据库管理系统(DBMS),它结合了文档和图形引擎的优势,提供了强大的数据存储和查询能力。它支持文档、图形、对象和键值等多种数据模型,适用于处理各种复杂的数据关系和应用场景。OrientDB 还提供了图形界面 OrientDB Studio,支持通过 GUI 进行数据库操作,如执行查询、编辑顶点、管理架构等。同时,OrientDB 支持多种编程语言的 API 和驱动程序,如 Java、Python 等,便于开发者将 OrientDB 集成到项目中。原创 2024-08-11 07:30:00 · 709 阅读 · 0 评论