
知识图谱
文章平均质量分 91
deepdata_cn
极深数据,深耕数据行业。
展开
-
知识管理和笔记软件(Obsidian)
Obsidian是一款功能强大的笔记软件。2020年由在滑铁卢大学结识的Shida Li和Erica Xu在新冠疫情隔离期间创立。2025年:1月30日,发布稳定版本1.8,持续为用户提供更稳定、更强大的笔记记录和知识管理体验。镜像开源地址:https://gitcode.com/gh_mirrors/ob/obsidian-releases。原创 2025-03-03 07:45:00 · 1139 阅读 · 0 评论 -
什么是多跳知识推理
多跳知识推理是一种在知识图谱等知识表示结构上进行的复杂推理方式,通过多个步骤或“跳跃”来推断出隐含的知识或关系。多跳知识推理是指在知识图谱中,从一个或多个已知的节点(实体)出发,通过沿着多条边(关系)进行多次跳转,利用多个相关的知识片段,来推导出新的知识或结论的过程。例如,在一个包含人物、电影、导演等信息的知识图谱中,已知“演员A出演了电影B”以及“电影B的导演是C”,通过这两条信息的“跳跃”,可以推理出“演员A和导演C有合作关系”。原创 2025-02-09 08:00:00 · 947 阅读 · 0 评论 -
知识推理的发展历程
知识推理是从已有的知识出发,运用逻辑规则、推理算法等手段,推导出新的知识或结论的过程,在人工智能、知识图谱、数据挖掘等多个领域都有重要应用。知识推理的目的是获取新知识。通过对已掌握的知识进行分析、推导,发现隐藏在数据和知识中的新信息,扩展知识边界。例如,在医疗领域,根据患者的症状、检查结果以及已有的医学知识,推理出可能患有的疾病及潜在的并发症,从而为诊断和治疗提供更多依据。其次是验证知识的一致性和完整性。检查知识体系中是否存在矛盾或缺失的部分。原创 2025-02-09 07:45:00 · 695 阅读 · 0 评论 -
知识图谱嵌入开源框架(OpenKE)
OpenKE 是由清华大学自然语言处理实验室(THUNLP)基于 TensorFlow 和 PyTorch 开发的用于知识图谱嵌入的开源框架。它提供了快速且稳定的各类接口,并实现了诸多经典的知识表示学习模型。原创 2024-11-25 07:45:00 · 1502 阅读 · 0 评论 -
语义分析工具(OpenHowNet)
OpenHowNet由清华大学自然语言处理实验室(THUNLP)开发。它在传统的 HowNet 基础上进行了扩展和更新,使用“概念”和“属性”来描述词的意义,每个概念都有具体的意义和上下文,属性描述概念间的关联。利用深度学习模型自动标注数据,提供了简洁易用的 API,方便开发者将其集成到应用或研究中。可用于自然语言理解、文本生成、情感分析等,能帮助 AI 更好地理解人类语言,提升聊天机器人、问答系统、语音识别等应用的理解能力,也可以辅助分析文本的情感倾向。原创 2024-10-02 07:30:00 · 1390 阅读 · 0 评论 -
数据去重工具(Dedupe)
Dedupe主要用于数据去重和实体识别,可以帮助在构建知识图谱时处理数据中的重复信息,提高数据的质量和准确性。原创 2024-09-30 07:45:00 · 1636 阅读 · 0 评论 -
实体关系抽取工具包(OpenNRE)
OpenNRE是一个用于关系抽取的开源工具包,能够从文本中自动抽取实体之间的关系,支持多种关系抽取模型和算法,方便用户进行知识图谱的关系构建。OpenNRE由清华大学刘知远老师及其团队开发,是自然语言处理领域中用于从文本中抽取实体之间关系的重要工具。其目的是为研究人员和开发者提供一个统一的框架,以便实现各种神经网络模型进行关系抽取,帮助构建知识图谱等需要实体关系信息的应用。原创 2024-09-29 07:45:00 · 1106 阅读 · 0 评论