
深度学习
文章平均质量分 91
deepdata_cn
极深数据,深耕数据行业。
展开
-
BERT的变体模型(ELECTRA)
ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately)是Google于2020年推出的预训练语言模型,针对BERT类模型训练效率低下和数据利用率不足的痛点,提出了颠覆性的解决方案。传统BERT依赖掩码语言模型(MLM)任务,仅利用输入中15%的Token进行预测,导致大量语义信息浪费。而ELECTRA通过替换Token检测(RTD)任务,迫使模型对输入的每个Token进行细粒度语义判别,实现原创 2025-05-29 07:30:00 · 762 阅读 · 0 评论 -
基于医疗数据深度学习的疾病预测
医疗领域积累了大量的患者数据,包括病历、检验报告、影像资料等。利用这些数据,通过深度学习算法构建疾病预测模型,能够提前预测疾病的发生风险、病情发展趋势等。比如,基于患者的历史病历和基因数据,预测心血管疾病的发病风险;或者根据肿瘤患者的治疗过程数据,预测肿瘤的复发概率和治疗效果。可以采用时间序列分析、生存分析等方法,结合深度学习模型,对医疗数据进行建模和分析,挖掘数据中的潜在规律,为临床决策提供科学依据。原创 2025-05-26 07:45:00 · 1022 阅读 · 0 评论 -
开源深度学习框架(DeepSlide)
DeepSlide是一个开源的深度学习框架,融合计算机视觉与深度学习技术,用于简化病理学图像(如切片)处理和分析流程,提升诊断效率和精度。它支持多种预训练的卷积神经网络,如ResNet、DenseNet和UNet等,采用基于滑动窗口的技术处理大尺寸高分辨率病理切片以节省内存并保证准确性,还支持集成多个模型预测提高性能。提供结果可视化工具和后处理模块。可应用于肿瘤检测、药物响应预测、疾病分级以及作为医学研究的可扩展实验平台。原创 2025-04-30 07:45:00 · 649 阅读 · 0 评论 -
深度学习应用于医学图像辅助诊断
1.医学影像的重要性医学影像在医疗过程中具有不可替代的地位。它如同医生的 “透视眼”,能够帮助医生尽早识别病变,为疾病的早期干预提供可能。例如,在肺癌早期,通过低剂量螺旋 CT 扫描,可发现毫米级的微小肺结节,为患者争取宝贵的治疗时间。同时,医学影像还能为医生制定个性化治疗方案提供精确依据,通过对患者的 CT、MRI 等影像进行细致分析,了解病变的位置、大小、形态以及与周围组织的关系,从而设计出最适合患者的治疗方案。原创 2025-04-30 07:30:00 · 1061 阅读 · 0 评论 -
深度学习在医学图像分析中的应用
医学成像技术如X光片、CT扫描、MRI(磁共振成像)、超声成像等,能够生成人体内部结构和生理状态的图像,这些图像对于疾病的诊断、治疗方案的制定以及病情的监测至关重要。然而,传统上医学图像的解读主要依赖专业医生手动进行,这一过程存在诸多局限性。首先,手动解读医学图像耗时费力,在面对大量患者的图像时,医生的工作负担沉重,效率低下。其次,医生的主观因素会对图像解读结果产生影响,不同医生对同一图像可能存在不同的判断,导致诊断结果的准确性和一致性难以保证。原创 2025-04-28 07:45:00 · 731 阅读 · 0 评论 -
深度学习神经网络架构(ResNet)
ResNet是一种深度学习神经网络架构,在图像识别等领域有着广泛的应用和重要的地位。随着神经网络深度的增加,会出现梯度消失、退化问题等。梯度消失会导致模型难以训练,而退化问题则表现为随着网络层数的增加,模型的准确率反而下降。ResNet的提出就是为了解决这些问题,使得训练极深的神经网络成为可能。早期,随着神经网络层数的逐步增加,研究人员原本期待模型能够学习到更复杂、更抽象的特征,从而提升性能。然而,实际情况却事与愿违,网络出现了梯度消失、退化等棘手问题。原创 2025-04-28 07:30:00 · 981 阅读 · 0 评论 -
如何利用深度学习进行交通流量预测与疏导
传统的交通管理方法,诸如固定的信号灯配时方案、基于经验的警力部署等,在面对现代城市如此复杂多变的交通状况时,已然显得捉襟见肘,难以满足高效交通管理的需求。在此背景下,准确的交通流量预测便成为了破解交通拥堵难题的关键一环,对于交通管理和疏导具有举足轻重的意义。深度学习算法宛如一把神奇的钥匙,能够深入挖掘历史交通流量数据、天气数据、事件数据等海量信息背后隐藏的规律。原创 2025-04-20 07:45:00 · 863 阅读 · 0 评论 -
分布式深度学习库(DL4J)
Deep Learning4j (DL4J)是一个开源的分布式深度学习库,是一个为Java和Scala编写的开源分布式深度学习库。它在JVM(Java虚拟机)上运行,允许开发人员利用Java的优势,如性能、可移植性和企业级开发工具来构建深度学习模型。DL4J与Hadoop和Spark集成良好,能够在分布式环境中有效地处理大规模数据。原创 2024-12-19 07:45:00 · 992 阅读 · 0 评论 -
深度学习平台(SINGA)
Apache SINGA是一个由Apache软件基金会管理的开源分布式深度学习平台,它支持多种深度学习模型和算法。SINGA最初由新加坡国立大学的数据库系统组与浙江大学的数据库组合作开发,于2014年启动,并在2015年10月8日发布了首个版本,2015年3月其原型被Apache孵化器接受。SINGA的安装较为方便,用户可以使用Conda、Pip、Docker等工具进行安装,也可以从源代码进行安装。原创 2024-12-10 07:45:00 · 1108 阅读 · 0 评论 -
开源深度学习平台(H2O)
H2O是一个开源的深度学习平台,它提供了深度学习算法,支持CPU和GPU平台的单线程和多线程模式。H2O平台的性能测试表明,选择合适的参数对于优化机器学习方法,尤其是图像识别问题至关重要。H2O由H2O.ai(前身为Oxdata)于2011年在硅谷推出,旨在为大数据分析提供高效的开源软件解决方案,使用户能够快速处理和分析大量数据,发现数据中的模式和规律。H2O基于Java虚拟机(JVM)构建,采用分布式架构,能够在多核CPU或GPU上并行运行,充分利用硬件资源提升计算性能。原创 2024-12-06 07:05:25 · 938 阅读 · 0 评论