
联邦学习
文章平均质量分 91
deepdata_cn
极深数据,深耕数据行业。
展开
-
联邦学习与边缘计算的融合
在物联网(IoT)快速发展的时代,数以亿计的边缘设备如传感器、智能终端等持续产生海量数据。然而,将这些数据全部传输至云端进行处理,不仅面临高昂的网络带宽成本和较长的传输延迟,还存在严重的隐私泄露风险。在此背景下,联邦学习与边缘计算的融合为物联网数据处理提供了新的解决方案,展现出巨大的应用潜力。原创 2025-06-07 07:30:00 · 605 阅读 · 0 评论 -
联邦学习优化交通流量与提升出行体验
水平联邦学习为智能交通的数据协同提供了 “安全合规、高效增值” 的技术范式,其核心价值在于以模型流动替代数据流动,在保护隐私的前提下释放数据融合价值。随着联邦学习与边缘计算、5G 等技术的结合(如车载终端参与联邦训练),未来将进一步推动智能交通向 “车 - 路 - 云 - 人” 全要素协同的终极形态演进,为城市交通带来更高效、更安全、更智能的变革。原创 2025-06-05 07:45:00 · 1032 阅读 · 0 评论 -
联邦学习在医疗领域的应用
联邦学习是一种分布式机器学习框架,在该框架下,多个参与者(如医院)可以联合起来训练一个全局模型,每个参与者只保留自己的本地数据集,并通过加密通信协议与中心服务器交互更新参数。联邦学习,作为一种创新的分布式机器学习范式,恰似一把神奇的钥匙,为解决医疗数据隐私与协作困境带来了曙光。它打破了数据孤岛之间的壁垒,让医疗数据在不离开本地机构的前提下,实现跨机构的协同合作,共同为提升医疗服务质量贡献力量。原创 2025-06-04 07:30:00 · 881 阅读 · 0 评论 -
联邦学习与深度学习结合
联邦学习(Federated Learning)与深度学习(Deep Learning)的结合,是当前人工智能领域的研究热点之一。这种结合既发挥了深度学习在复杂数据建模中的强大能力,又通过联邦学习的分布式框架解决了数据隐私、安全和合规问题,尤其适用于医疗、金融、物联网等数据敏感场景。原创 2025-05-31 07:30:00 · 640 阅读 · 0 评论 -
联邦大小模型协作学习
在数字化浪潮中,数据已然成为驱动各行业发展的核心燃料。然而,随着数据敏感性增强以及隐私法规趋严,传统集中式机器学习面临诸多挑战。联邦学习这一创新性的分布式机器学习方法应运而生,它允许众多参与者,比如各类设备或者不同机构,在无需共享自身数据的情况下,携手共同训练一个全局模型。这种独特的技术模式,在隐私保护、数据安全备受重视,以及受法律严格限制数据交换的场景中,展现出了无可比拟的适用性。原创 2025-04-17 07:30:00 · 1048 阅读 · 0 评论 -
联邦学习开源框架(PySyft)
PySyft是一个由OpenMined组织开发的一个开源Python库,用于安全和私密的深度学习。它允许研究人员和开发人员在不泄露数据的情况下训练和使用深度学习模型。PySyft的核心目标是实现安全和私密的深度学习,其核心理念是“在数据所在的地方进行数据科学”,即允许数据科学家和研究人员在不直接访问原始数据的情况下对数据进行分析和建模,从而保护数据隐私,也为跨组织的数据协作提供了可能。原创 2024-12-06 08:40:32 · 1228 阅读 · 0 评论 -
协作计算SDK(NVIDIA FLARE)
NVIDIA FLARE(NVIDIA Federated Learning Application Runtime Environment)是一个用于协作计算的开源Python SDK。它允许研究人员和数据科学家将机器学习、深度学习或一般计算工作流调整为联合范式,以实现安全、隐私保护的多方协作。原创 2024-11-29 07:30:00 · 1621 阅读 · 0 评论 -
时空联邦计算开源平台——虎符(OpenHuFu)
虎符(OpenHuFu)由北京航空航天大学的研究团队研发。这是一个时空联邦计算开源平台,已经适配当前各种主流时空大数据计算平台,支持多方数据自治环境下的安全高效协同查询。它以“原始数据不出域、数据可用不可见”的共享理念,为破解跨域数据要素流动问题提供了新思路。在共享出行、公共卫生、社会治理等行业有着应用示范,能够实现不同部门或机构之间时空数据的安全共享和协同分析,为城市管理、公共服务等提供有力支持。原创 2024-11-05 07:45:00 · 1011 阅读 · 0 评论 -
联邦学习框架(PaddleFL)
PaddleFL是百度飞桨(PaddlePaddle)推出的联邦学习框架。它基于百度飞桨的深度学习技术,提供了高效、灵活的联邦学习解决方案。开发者可以使用 PaddleFL 快速搭建联邦学习系统,实现数据的分布式训练和模型的协同更新。目标是解决组织间数据隔离和数据知识安全共享的问题,在不直接交换原始数据的情况下,实现跨机构的模型训练。适用于多个行业的联合建模场景,比如多个企业联合进行产品推荐模型的训练,既能充分利用各方的数据优势,又能保护企业的商业隐私。原创 2024-11-05 07:30:00 · 1510 阅读 · 0 评论