题目:
如果对于n=0,1,…,N-1,x[n]是独立同分布(IID),且服从 ,证明正则条件不成立,即对于所有的
因此,CRLB不能应用到本题。
解答:
根据题意,x[n]的概率密度函数可以表示为:
换种方式可以表示为:
其中
那么,只有当: (n=0,1,…,N-1)时:
其他区域,
因此,在此区域内:
因此:
不满足正则条件。
本质上看,单独考虑似然函数:
该似然函数,在 的区间内,取值与 无关,且在此区间内一直是单调递减函数,似然函数毫无“尖锐性”可言,因此求反应“尖锐性”的二阶导数,看曲线曲率意义也不大。
另外一种不严谨的判断方式,是求期望的积分上下限中,不能出现待估计参数。