【python】手写数字识别模型api接口调用

写在前面
我用pytorch搭建了一个cnn模型,训练mnist数据集,然后将训练后的模型部署到了线上,并提供一个可供调用的api接口。

成果演示
http://pytorch-cnn-mnist.herokuapp.com/
接口文档
请求地址
http://pytorch-cnn-mnist.herokuapp.com/predict/
请求方法
post

必要参数
字段 类型 描述
data 字符串 图片的base64编码(包含头部信息)
成功响应
字段 类型 描述
prediction 整型 手写数字的预测结果
confidence 字符串 预测结果正确的概率
请求示例
测试图片

请求代码

import requests, base64, json

with open('test.jpg', 'rb') as f:
    data = base64.b64encode(f.read()).decode()
data = 'data:image/jpeg;base64,'+data
url = 'http://pytorch-cnn-mnist.herokuapp.com/predict/'
res = requests.post(url, data=data).json()

print(json.dumps(res, indent=4))
响应结果
{
	"prediction": 2,
    "confidence": "98.30%"
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值