
论文
文章平均质量分 61
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
论文创新点和贡献点该如何挖掘?
2>窗口、token、频率、一些其他特征、embedding。7> 训练方式但解决了什么问题,过拟合还是回到1,3小点。8> 解决了什么关键场景业务问题(故事和实际)3>时间复杂度、训练推理速度、内存开销啥的。4>时序和通道 局部-全局(不同特征视角)贡献点是怎么去挖掘,去写,去找方向。5>多任务、数据(任务视角)6> 通用性、即插即用。原创 2024-06-17 16:11:12 · 845 阅读 · 0 评论 -
Nature Machine Intelligence 期刊信息
模版:提交格式:论文目录细节。原创 2024-02-03 16:15:48 · 731 阅读 · 0 评论 -
Openreview IClR2024审稿意见以及如何rebuttal
R1为什么直接从其他剧集获取信息可以提高性能,尽管动态可能会有所不同。请与其他一些数据增强基线进行比较。R2R3。原创 2023-11-11 10:01:44 · 4268 阅读 · 0 评论 -
研三答辩准备的问题//持续更新
我觉得是好使的(但未验证),因为我们的方法在广泛的不同领域的数据集上都进行了验证,初步证明了算法的效果,而变工况本身是一个新的领域,在我肤浅的看法中,其背后的本质类似深度学习里面的”迁移学习“的概念,如图transformer现在构建了AI领域的base,丝毫不影响后来的人在transformer的基础上做迁移学习的研究。2、如果老师继续加深问,那这个能好使吗?1、你这个方法不是应对变工况对吗?原创 2023-10-22 15:48:54 · 165 阅读 · 4 评论 -
顶会框架整理-ICLR2024 // 通用写作逻辑
① 一两句话介绍一下问题。② 然后Inspired by灵感,设计的方法,解决了什么问题。③详细的描述(关于你的方法,包括方法的优点)④ 大量的实验来验证你的想法 ⑤ 可复现的资料(比如Github链接Eg:(填你自己的东西吧~)原创 2023-09-30 11:05:19 · 627 阅读 · 1 评论 -
最新最全大语言模型(LLM)与机器人结合文献及其代码
GitHub - GT-RIPL/Awesome-LLM-Robotics: A comprehensive list of papers using large language/multi-modal models for Robotics/RL, including papers, codes, and related websites GitHub - jrin771/Everything-LLMs-And-Robotics: The world's largest GitHub Reposit原创 2023-07-12 15:13:10 · 1760 阅读 · 0 评论 -
latex中一行文字出现溢出问题的解决方法,(设置自动换行,两端对齐)
latex中一行文字出现溢出问题的解决方法,(设置自动换行,两端对齐)原创 2023-04-23 16:58:25 · 5844 阅读 · 0 评论 -
VLDB审稿意见
VLDB审稿意见原创 2023-01-16 16:36:41 · 910 阅读 · 1 评论 -
论文笔记:《Time Series Generative Adversrial Networks》(TimeGAN,时间序列GAN)
论文笔记:《Time Series Generative Adversrial Networks》(TimeGAN,时间序列GAN)原创 2022-08-10 15:47:18 · 3094 阅读 · 0 评论 -
Non-stationary Transformers:Rethinking the Stationarity in Time Series Forecasting[论文初读]
Non-stationary Transformers:Rethinking the Stationarity in Time Series Forecasting[论文初读]原创 2022-07-08 14:35:32 · 2747 阅读 · 0 评论 -
Fedformer:Frequency Enhanced DecomposedTransformer for long-term series forecasting[还在学习中···]
Referencefedformer (Frequency Enhanced DecomposedTransformer )时间序列预测 - 知乎#今日论文推荐#【ICML2022】FEDformer:用于长期序列预测的频率增强分解Transformer_wwwsxn的博客-CSDN博客原创 2022-06-09 17:14:10 · 1482 阅读 · 1 评论 -
Informer:比Transformer更有效的长时间序列预测
目录AAAI 2021最佳论文:比Transformer更有效的长时间序列预测BackgroundWhy attentionMethods:the details of InformerSolve_Challenge_1:最基本的一个思路就是降低Attention的计算量,仅计算一些非常重要的或者说有代表性的Attention即可,一些相近的思路在近期不断的提出,比如Sparse-Attention,这个方法涉及了稀疏化Attention的操作,来减少Attention计算量,然后涉及的原创 2022-05-23 19:44:27 · 9986 阅读 · 5 评论 -
DTW(Dynamic Time Warping)是用来检测两个时序相似程度的算法【亟待研究】
参考资料序列相似度加速_百度搜索基于动态规划DTW算法加速衡量两个不同的时间序列的相似性_幻风_huanfeng的博客-CSDN博客_dtw计算相似度还在按部就班的算自相关?FFT让你体验飞一般的感觉!_工科南的博客-CSDN博客 //在Autoformer使用fft计算自相关性的背景下考虑使用可替代方式基于DTW度量的万亿级时间序列检索的加速算法 - 论文阅读笔记 - 知乎...原创 2022-05-18 16:45:21 · 436 阅读 · 0 评论 -
与怀翱师兄交流——关于GNN做时间序列预测
1.图只是为了多变量师兄给的论文整理链接https://github.com/thunlp/GNNPapers2. “我最近在看thuml组的autoformer,看代码了,想在这个基础上做点东西”"可以,你找一个时序的方法,改进一下,再用图增强一下,就行了"3.“纯用图不太好做,图神经网络,基本是图分类,节点分类问题比较多,预测基本是交通流量用的多,基本上也是会用一个时序的方法”4.“嗯嗯,说白了,你数据中每一个变量就是图的一个节点,边、图邻接矩阵,根据你自己的情况有或没有,没原创 2022-05-15 20:31:31 · 2857 阅读 · 1 评论 -
GNN论文调研【方向是时间序列】
【时序】DCRNN:结合扩散卷积和GNN的用于交通流量预测的时空预测网络_datamonday的博客-CSDN博客【时序】Time2Graph:使用动态 Shapelets 和 GNN 进行时间序列建模_datamonday的博客-CSDN博客_time2graph基于GNN的多变量时序预测(MTGNN) - 知乎基于LSTM与GNN融合的COVID-19预测模型|lstm|gnn|时间序列【时序】Time2Graph:使用动态 Shapelets 和 GNN 进行时间序列建模_datam.原创 2022-05-14 23:15:38 · 1342 阅读 · 0 评论 -
顶会论文中的poster,oral,spotlight的区别是什么?含金量排序依次是?
In CVPR 2016 we will have 3 presentation formats for accepted papers: 2 types of oral presentations (orals and spotlights) and poster presentations.- ORALS: equivalent to the traditional CVPR orals. CVPR 2016 will have a similar percentage of orals as in原创 2022-05-05 11:00:16 · 57914 阅读 · 2 评论 -
Autoformer: 基于深度分解架构和自相关机制的长期序列预测模型[2021neurips][精读]
目录1.文章要解决的问题:长期时间序列预测(值得研究的方向)2.解决方法(贡献,创新点):深度分解架构(Deep Decomposition Architecture)Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting1.文章要解决的问题:长期时间序列预测(值得研究的方向)长期时间序列预测问题:待预测的序列长度远远大于输入长度,即基于有...原创 2022-05-04 02:08:09 · 2467 阅读 · 3 评论 -
Transformer论文粗读[Neurips 2017]最佳论文
1.Attention first show is in Seq2Seq architecture[Year2015]2.Self-Attention first show is in Lstm network[Year2016]Attention is all you need首先咱们回归一下Attention for Rnn(attention in Seq2Seq)首先,Seq2Seq这个结构由Encoder和Decoder构成,Encoder有m个输入向量(x1,x2,...原创 2022-04-29 01:54:16 · 1565 阅读 · 0 评论 -
NCNN for Diagnosis of Bearing Defects in Rotary Machinery -IEEEs
摘要-这项工作提出了一种新的进化神经网络(NCNN)的发展,用于从小样本中有效识别轴承缺陷。为了从较小的训练数据中进行有效的特征学习,在现有的代价函数中加入额外的稀疏代价,对卷积神经网络(CNN)的代价函数进行了修正。提出了一种新的三角交叉熵函数来计算稀疏成本。提出的代价函数通过避免CNN隐藏层中神经元的必要激活引入稀疏性。为了从小训练样本中识别轴承缺陷,基于NCNN的转移学习以以下方式应用。首先,得到了源域机的原始振动信号和包络信号。然后,将这些包络信号应用于NCNN,以便从源域中获取的大...原创 2021-11-30 18:30:02 · 816 阅读 · 1 评论 -
Wps的两种论文标注参考文献
wps怎么标注文献编码原创 2021-11-26 21:51:37 · 10405 阅读 · 1 评论 -
PHM(prognostics and health management健康管理系统)
参考链接中讲Phm的定义、历史、发展前景都讲得不错,我就小结一下。1.为什么需要phm技术? 维修故障成本太高2.phm技术的特点 PHM的特点是,必须有海量数据分析和健康判断。数据是基础,而有了数据如何分析也是一个大问题。国内的航空公司,几十年海量的数据,都无法自己开发PHM系统。这个难点就是模型:健康模型怎么评价,而预测模型更难。这就是工业技术体系,如何将专家经验和实践经验相结合,这正是工业化的核心。要实现PHM,除了物理基础条件保障外,既需要...原创 2021-10-30 10:35:34 · 9722 阅读 · 0 评论 -
简单理解小波变换
可以不看的内容: 最近做故障检测读论文有用小波做特征提取的方法,之前只知道小波技术在信号的课上讲过没有深入了解,仅仅到FFT就浅尝辄止了,今天回顾一下小波技术。 一部分话,[1]同时结合油压波形的特点,通过大量实验对比了两种信号特征提取方案:(1)利用小波包频带分析技术把油压信号分解到不同的频带,并对油压信号各个频带的信号能量进行统计分析,以此区分燃油系统不同的故障。(2)油压波形中含有丰富的状态信息,提取燃油压力波形中的波形宽度、波形幅度、最大压力...原创 2021-10-20 13:26:34 · 2559 阅读 · 0 评论 -
有关学术界的治理-来自学术道德通论课程作业
作者:1.学术界治理的优势在于治理的形式多样,设定和实施治理的自由裁量空间较大等方面。学术治理的方式更能体现大学的核心价值和本质属性,即体现大学的学术性,严谨的学术治理是维护和支撑良好的高校学术秩序和文化的中央前提与保证,能够营造一个静心研究、宽容失败的学术环境,实现学术自由,促进学术繁荣。2.学术界治理还可以营造一种充满监督和批评的学术环境,如果缺乏一个监督批评的环境,就很容易导致科学不端行为愈来愈泛滥。如果学术不端行为一出现就被揭露和批评,即使是暂时没有严格的惩治,也会在很大程...原创 2021-10-06 11:44:34 · 357 阅读 · 0 评论 -
界定综述中的抄袭行为
感谢姜文康老兄的分享···原创 2021-09-28 21:31:20 · 418 阅读 · 0 评论 -
论文的第n作者、通讯作者
第一作者可以有几个?“第一作者可以有1-3个,但一般第一作者只有一人是最好的。第一作者是对实验和撰写文章贡献最大的那个人,是指在作者一栏签名排第一位的人。第一作者在论文的写作过程中发挥着关键作用,在评职晋升中是备受认可的,第一作者的身份往往可以充分体现作者的科研能力和学术水平。”这主要取决于论文的情况以及发表刊物是否可,或者认可几位并列第一作者,我们都知道第一作者在论文的写作过程中发挥着关键作用,在评职晋升中是备受认可的,第一作者的身份往往可以充分体现作者的科研能力和学术水平,...原创 2021-09-25 22:22:07 · 3826 阅读 · 0 评论 -
PSO算法的改进【使用混沌优化算法】
PSO精简描述:PSO初始化为一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值”来更新自己。pBest(个体极值)和gBest(全局极值)。迭代终止条件根据具体问题,一般选为最大迭代次数或粒子群搜索到的最优位置满足预定最小适应阈值。利用混沌优化算法对PSO算法参数即加速因子c1、c2和惯性权重w进行优选,从而达到改善算法效果的目的。Reference:混沌优化算法:ht...原创 2021-09-23 19:50:23 · 2921 阅读 · 0 评论 -
基于yolov5的目标检测与LPRnet的车牌识别
摘要:在城市交通管理、视频监控、车辆识别和停车场管理中车辆检测与车牌识别是一项富有挑战而重要的任务。现有的车辆与车牌检测和车牌识别方法大多集中在车辆的颜色、大小和形状上,受天气和光照,相机拍摄等因素的影响很大。在这项工作中,我们利用深度学习识别不同条件下的车辆及其车牌信息。更具体地说,实时目标检测网络(Yolov5Net)用于从车辆图像中提取特征并且通过训练对车辆进行实时目标检测,车牌识别神经网络(LPRnet)用于从车牌提取特征并且通过训练对车牌进行实时识别。通过对Yolov5Net提取的特征进行了分原创 2021-08-16 13:35:57 · 11734 阅读 · 7 评论 -
何为严格评价? What is critical appraisal?
正确地评价发表研究的质量以及它们与特定患者的临床相关性An ability to evaluate correctly the quality of published studies and their clinical relevance to specific patients.严格评价的技能是循证医学实践的前提Skill with critical appraisal is also a prerequisite for the practice of evidence-base转载 2021-07-03 09:59:47 · 460 阅读 · 0 评论 -
SCI论文发表流程详解
发表SCI论文一直是科研工作者的追求,但如何发表却困扰着他们。科研工作者历经千辛万苦把论文写出来,却不知道去哪投稿?怎么投稿?为了帮助广大科研工作者顺利发表论文,小编根据多年的投稿经验,给大家整理了SCI论文的发表流程。具体来说,SCI论文发表流程可以分为投稿前、投稿中、投稿后,只有把每一步都做好,论文发表才能更有保障。一、投稿前论文投稿前一定要三步走:选期刊、调格式、备材料。选期刊是论文投稿前的关键一步,可以说,期刊选的好,论文发的早。选期刊时,一定要仔细考虑论文与期刊的相符程度,论文是否符合转载 2021-06-24 16:34:34 · 132280 阅读 · 0 评论 -
SCI各领域国际顶尖学术期刊一览
SCI各领域国际顶尖学术期开一览中国科学院科技情报中心将各领域的SCI期刊按影响因子大小分成四区,其中一区和二区为高影响因子论文,三区为中等影响因子论文,四区为低影响因子论文。其中,一区和二区的一小部分杂志被列为顶尖学术期刊(Top Journal)。要比较各校在高水平的杂志的论文发表情况,可以根据顶尖杂志的名单和一区二区的杂志名单,查询ISI网站,质量如何,一比就知,无需争辩。一目了然。eg:有机会下载下来:https://wenku.baidu.com/view/4fffafecfe0原创 2021-06-24 14:29:45 · 5852 阅读 · 0 评论 -
ICCV、ECCV、CVPR三大国际会议
目录前言一、ICCV、ECCV、CVPR是什么?1.ICCV2.ECCV3.CVPR二、三大会链接及论文下载链接前言 作为刚入门CV的新人,有必要记住计算机视觉方面的三大顶级会议:ICCV,CVPR,ECCV,统称为ICE。 与其它学术领域不同,计算机科学使用会议而不是期刊作为发表研究成果的主要方式。目前国外计算机界评价学术水平主要看在顶级学术会议上发表的论文。特别是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。 但我国目前评价学术水平的标准主要看...转载 2021-06-24 14:19:18 · 27578 阅读 · 1 评论 -
论文之展望
摘抄回答:https://zhuanlan.zhihu.com/p/65673297像写临终遗言一样写论文展望所有的科研论文写起来都是一个套路。大体上论文分为前言、方法、结果、结论和展望几个部分。这样的写法,让科研论文像八股文一样味如嚼蜡,是催眠良方。失眠的时候读论文,保准马上沉入梦乡,呼呼大睡。但是这样的八股文架构,却可以使得科研论文的内容一目了然。科研论文虽然没办法像小说一样读起来引人入胜,但是在信息交换和知识传播方面却有着比较高的效率。一篇好的科研论文可以非常快地使读者找到有用的信息。转载 2021-04-16 10:17:31 · 937 阅读 · 0 评论