
基础网络理论整理
基础不牢,地动山摇
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
变种卷积汇总整理
1x1卷积的原理与应用(163条消息) 1x1卷积的作用_salary_up_27k的博客-CSDN博客_1x1卷积深度笔记|1x1卷积核的作用 - 知乎1.有的时候,我们想在不增加感受野的情况下,让网络加深,为的就是引入更多的非线性。2.升维或者降维,卷积后的的 featuremap 通道数是与卷积核的个数相同的,为什么要用 1x1 呢,在训练的时候,卷积核里面的值就是要训练的权重,3x3 的尺寸是 1x1 所需要内存的 9 倍,其它的类似。所以,有时根据实际情况只想单纯的去提升或者降低.原创 2022-04-17 10:23:51 · 1397 阅读 · 0 评论 -
AveragePooling1D和GlobalAveragePooling1D的区别
时序的时间维度上全局池化 比如 x(t1),x(t2),...x(tn),把它们相加并且取平均,这样就进行了降维,一个序列变成了一个值。写的简洁,找时间回来补细节。参考资料GlobalAveragePooling1D_百度搜索 (baidu.com)(161条消息) [TensorFlow]Embedding Layer 和 GlobalAveragePooling1d Layer原理及作用_陆羊羊的博客-CSDN博客...原创 2022-04-15 10:57:53 · 766 阅读 · 0 评论 -
深度学习500问-ch03深度学习基础
编辑 · ch03_深度学习基础/第三章_深度学习基础.md · master · mirrors / scutan90 / DeepLearning-500-questions · GitCode原创 2022-04-15 10:37:19 · 610 阅读 · 0 评论