
时间序列分析
文章平均质量分 54
一起学习吧
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
UniTS代码解读
总结来说,UniTS模型中不同类型的token的embedding方式都是通过线性层实现的,具体实现细节在。在预训练过程中用于生成掩码序列,并在模型训练时帮助模型学习如何预测被掩码的位置。原创 2024-07-26 08:44:17 · 595 阅读 · 0 评论 -
通用时序大模型任务统一的任务定义#UniTS: Building a Unified Time Series Model
对问题的定义写的很好原创 2024-05-19 16:34:41 · 259 阅读 · 0 评论 -
单变量时间序列预测,可控输入输出步长
我有一列数据想做时间序列预测,有30000+行,用pytorch框架完成,输入是(input_length)时间步,输出是(ouput_length)时间步,数据是csv文件,请帮我写一个框架,完成训练。类定义了一个LSTM模型,其输入和输出大小取决于数据集中的输入长度和输出长度。类来处理数据,该类将一系列时间步作为输入,并将接下来的一系列时间步作为输出,以便进行时间序列预测。函数中,我们使用训练数据集和验证数据集来训练模型,并保存训练后的模型。请完成加载训练结束保存的模型,进行推理部分的代码。原创 2023-06-09 16:42:52 · 414 阅读 · 1 评论 -
时间序列预测综述类资料
时间序列预测综述类资料原创 2023-05-18 15:15:11 · 305 阅读 · 0 评论 -
RevIN:Reversible Instance Normalization for Accurate TSF Against Distribution Shift//(未完待续)
RevIN:Reversible Instance Normalization for Accurate TSF Against Distribution Shift//(未完待续)原创 2023-01-16 01:53:55 · 909 阅读 · 0 评论 -
代码:时序数据分解为奇数列与偶数列再合并来自SCINET
看见SCINET源码,把时序数据分解成了奇数列与偶数列,好奇之下,重构一下代码~首先所谓的even sequence和odd sequence的意思就是分别为从x序列采样从0这个位置采样0,2,...,2n;从1这个位置采样1,3,...,2n±1;废话不多说,来看代码~,Splitting与zip_up_the_pants都是从Scinet源码里面拿出来的~,我只是简单测试了一下,方便更深入了解论文机制原创 2022-09-29 14:07:29 · 1122 阅读 · 0 评论 -
时间序列通道注意力模块
时间序列通道注意力模块原创 2022-09-26 03:12:18 · 1327 阅读 · 2 评论 -
How to Decompose Time Series Data into Trend and Seasonality
By Jason Brownlee on January 30, 2017 in Time SeriesLast Updated on December 10, 2020Time series decomposition involves thinking of a series as a combination of level, trend, seasonality, and noise components.Decomposition provides a useful abstra翻译 2022-09-19 20:36:35 · 371 阅读 · 0 评论 -
Are Transformers Effective for Time Series Forecasting?|填坑
正如这篇标题一样引人注目,Transformer在时序预测里面真的有效吗?这篇论文在Abstract就质疑了Transformer-based的TSF解决方案的相对高精度不是其结构提取时序特征的能力,相反认为是DMS(Direct-multi-step)预测策略的功劳,然后提出了一种结构简单的模型Dlinear(Decomposition Linear Model),说实话看到各种former的变形,能出一篇这种文章真不错,借用一网友的评价,重剑无锋,大巧不工,这篇论文工作真不错,来自香港中文大学的几个学生原创 2022-07-27 16:12:03 · 1747 阅读 · 0 评论 -
Fedformer-MOE模块
Fedformer-MOE模块原创 2022-07-12 19:56:17 · 798 阅读 · 0 评论 -
Non-stationary Transformers:Rethinking the Stationarity in Time Series Forecasting[论文初读]
Non-stationary Transformers:Rethinking the Stationarity in Time Series Forecasting[论文初读]原创 2022-07-08 14:35:32 · 2749 阅读 · 0 评论 -
卡尔曼时间序列预测
对于此前的若干篇与卡尔曼滤波有关的博文,所描述的算法都是基于过去以及当前时刻的传感器观测结果以估计当前时刻系统的状态,此为滤波算法。而在一些应用场景中,使用者对于系统状态的估计实时性要求较低,青睐于获取更准确的系统状态估计效果,此时可以利用一长段时间内获得的所有传感器观测来估计期间各个时刻的系统状态,此为平滑算法。卡尔曼平滑算法是其中常用的一种,又称为RTS平滑——Rauch–Tung–Striebel smoother (RTSS, Rauch et al., 1965),本篇博文将详细介绍该算法。原创 2022-06-25 15:33:30 · 1912 阅读 · 0 评论 -
Kalman Filter 遇到 Deep Learning : 卡尔曼滤波和深度学习有关的论文
突然心血来潮,想到卡尔曼滤波器是否能和深度学习结合。于是从谷歌学术上搜了一下,发现现在这方面的工作还没有太多结合。Top 期刊 TNNLS 2021 有一篇最新工作。ICLR 2020 出现一篇 Kalman Filter Is All You Need 的文章,但目前从开源的审稿意见来看,凶多吉少。其余的,大部分出自于一个 Guy Revach 学者(团队)。...翻译 2022-06-25 10:28:25 · 11874 阅读 · 11 评论 -
KaFormer个人笔记整理
实现简单, 是一个纯时域的filter,不需要进行频域变换,所以在工程上有很多应用。原创 2022-06-23 21:05:35 · 445 阅读 · 0 评论 -
【时序】TFT:具有可解释性的时间序列多步直接预测 Transformers[学习中...,亟待解决]
宅码原创 2022-06-09 17:22:32 · 920 阅读 · 1 评论 -
Autoformer与Informer代码材料//欢迎讨论
https://github.com/zhouhaoyi/Informer2020/issues/187关于预测值的masking · Issue #263 · zhouhaoyi/Informer2020 · GitHub原创 2022-05-26 16:55:30 · 984 阅读 · 2 评论 -
DTW(Dynamic Time Warping)是用来检测两个时序相似程度的算法【亟待研究】
参考资料序列相似度加速_百度搜索基于动态规划DTW算法加速衡量两个不同的时间序列的相似性_幻风_huanfeng的博客-CSDN博客_dtw计算相似度还在按部就班的算自相关?FFT让你体验飞一般的感觉!_工科南的博客-CSDN博客 //在Autoformer使用fft计算自相关性的背景下考虑使用可替代方式基于DTW度量的万亿级时间序列检索的加速算法 - 论文阅读笔记 - 知乎...原创 2022-05-18 16:45:21 · 436 阅读 · 0 评论 -
与怀翱师兄交流——关于GNN做时间序列预测
1.图只是为了多变量师兄给的论文整理链接https://github.com/thunlp/GNNPapers2. “我最近在看thuml组的autoformer,看代码了,想在这个基础上做点东西”"可以,你找一个时序的方法,改进一下,再用图增强一下,就行了"3.“纯用图不太好做,图神经网络,基本是图分类,节点分类问题比较多,预测基本是交通流量用的多,基本上也是会用一个时序的方法”4.“嗯嗯,说白了,你数据中每一个变量就是图的一个节点,边、图邻接矩阵,根据你自己的情况有或没有,没原创 2022-05-15 20:31:31 · 2858 阅读 · 1 评论 -
GNN论文调研【方向是时间序列】
【时序】DCRNN:结合扩散卷积和GNN的用于交通流量预测的时空预测网络_datamonday的博客-CSDN博客【时序】Time2Graph:使用动态 Shapelets 和 GNN 进行时间序列建模_datamonday的博客-CSDN博客_time2graph基于GNN的多变量时序预测(MTGNN) - 知乎基于LSTM与GNN融合的COVID-19预测模型|lstm|gnn|时间序列【时序】Time2Graph:使用动态 Shapelets 和 GNN 进行时间序列建模_datam.原创 2022-05-14 23:15:38 · 1342 阅读 · 0 评论 -
使用fft计算序列的互相关函数【亟待整理】
参考资料第19章:用FFT计算线性卷积和循环互相关 - 知乎//资料编写和整理不错离散傅里叶变换与相关性计算_天涯小客的博客-CSDN博客使用fft计算序列的互相关函数_q1281405619的博客-CSDN博客_fft求互相关什么是互相关_NERV_Dyson的博客-CSDN博客_循环互相关...原创 2022-05-13 21:13:14 · 1546 阅读 · 0 评论 -
Transformer论文粗读[Neurips 2017]最佳论文
1.Attention first show is in Seq2Seq architecture[Year2015]2.Self-Attention first show is in Lstm network[Year2016]Attention is all you need首先咱们回归一下Attention for Rnn(attention in Seq2Seq)首先,Seq2Seq这个结构由Encoder和Decoder构成,Encoder有m个输入向量(x1,x2,...原创 2022-04-29 01:54:16 · 1565 阅读 · 0 评论 -
transformer在时间序列预测中的应用【时序人必看】
参考资料transformer在时间序列预测中的应用 - 知乎//写的非常好,强烈推荐原创 2022-04-28 15:45:52 · 3484 阅读 · 0 评论 -
一维卷积神经网络及其应用【附keras代码】
这里我们先理解一维神经网络的数学理论,以及输入输出的shape,和如何计算的(164条消息) 一维卷积神经网络_卷积神经网络的基础知识_weixin_39526651的博客-CSDN博客这篇博客给的图文解释非常棒,欢迎学习(165条消息) 一维卷积_perfect_csdn1的博客-CSDN博客_一维卷积参考资料(164条消息) 一维卷积神经网络_卷积神经网络中的计算_weixin_39906521的博客-CSDN博客(164条消息) [译] 在 Keras...原创 2022-04-13 15:32:04 · 4008 阅读 · 0 评论 -
Keras embedding层的理解与使用
看了很多博客没有解释清楚Embedding层input_dim的意思,下面这篇博客我认为是解释清楚了,欢迎借鉴:keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=Non原创 2022-04-12 10:32:02 · 2929 阅读 · 0 评论 -
timeDistributed[Keras]
Referencekeras中TimeDistributed的用法_Kun Li的博客-CSDN博客_timedistributedTimeDistributed 简介_得克特的博客-CSDN博客_timedistributedkeras中的TimeDistributed的作用解释_fangzuliang的博客-CSDN博客_keras timedistributed原创 2022-04-10 17:09:24 · 1271 阅读 · 0 评论 -
7月之前数据工作:Keras版本时间序列预测
Simple Rnnfrom keras.models import Sequentialfrom keras.layers import Embedding,SimpleRNNmodel = Sequential()model = Sequential()# model.add(Embedding(10000,32))model.add(SimpleRNN(32,input_shape=(train_x.shape[1], train_x.shape[2])))# model.add原创 2022-04-10 10:17:27 · 1177 阅读 · 0 评论 -
时间序列模型评估指标
Reference深度学习——时间序列模型评价指标总结_水龙吟唱的博客-CSDN博客_时间序列预测评价指标机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE_府学路18号车神的博客-CSDN博客_预测评价指标时间序列预测的常见方法及思考 - 知乎入行时间序列预测必读的4篇论文(附代码)_计算机视觉研究院的博客-CSDN博客【时间序列】ICML 2020 时间序列相关论文总结(附原文源码)_AI蜗牛车的博客-CSDN博客NeurIPS 2020 | 时间序列...原创 2022-04-09 14:59:38 · 4595 阅读 · 0 评论 -
简单的lstm时间序列预测-已经开源[Keras版本][开源进行中]
网上有很多关于lstm时间序列的博客,我从不同博客那里借鉴了许多。理论知识:项目已开源上传到gitee上:时间序列预测仓库: 本项目从简单入门到涉及部分高级预测代码,正在维护中,涉及单变量单步预测,单变量多步预测,以及多变量单步预测,多变量多步预测。 (gitee.com)1.首先是构建时间序列数据,然后转化为监督学习数据集。series_to_supervised()函数from pandas import DataFramefrom pandas import conc.原创 2022-04-07 23:51:36 · 1254 阅读 · 0 评论