
时间序列预测
文章平均质量分 53
时间序列趋势预测
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
PromptCast-时间序列预测的好文推荐
这是关于大语言模型和时间序列预测结合的好文推荐,发现这篇文章,不仅idea不错和代码开源维护的不错,论文也比较详细(可能是顶刊而不是顶会,篇幅大,容易写清楚),并且关于它的Broader Impact与Limitation and Future Work也很值得学习!是个很不错的引导方向。目前时序预测的SOTA模型大多基于Transformer架构,以数值序列为输入,如下图的上半部分所示,通过多重编码融合历史数据信息,预测未来一定窗口内的序列数值。原创 2024-01-16 15:20:53 · 736 阅读 · 1 评论 -
轴承寿命相关细节的研究
数据段的重叠切分,不仅可以覆盖更多的标签数据序列,而且可以构造更多的序列样本,使得模型能有足够的学习样本量。将分段的数据,送入特征提取的全连接层中,之后经过位置编码,获得被编码的序列数据。为了更好显示编码前后的数据差异,选取40个采样点序列数据。原创 2023-10-20 21:00:04 · 469 阅读 · 0 评论 -
基于LSTM时间序列预测(简单又好用)无脑代码
1、单变量,多变量输入,自由切换2、单步预测,多步预测,自动切换3、基于Pytorch架构,单输出4、多个评估指标(MAE,MSE,R2,MAPE等)5、数据从excel/csv文件中读取,更换简单6、标准框架,数据分为训练集、验证集,测试集。原创 2023-10-19 22:39:27 · 400 阅读 · 2 评论 -
使用ARIMA进行时间序列预测|就代码而言
根据具体的需求,可以选择其中一种方式来指定预测的时间步。在示例代码中,我们使用了第一种方式,即指定了预测的起始时间步和结束时间步的索引位置。函数是用来进行时间序列的预测的,它可以在拟合后的模型上进行预测。在进行预测时,需要指定预测的起始时间步和结束时间步。函数是用来拟合ARIMA模型的,它会根据提供的时间序列数据来估计模型的参数。表示预测到时间序列的最后一个时间步后的第4个时间步。指定预测的起始时间步和结束时间步的索引位置。表示从时间序列的最后一个时间步开始预测,指定预测的起始时间步和预测的步数。原创 2023-07-19 20:13:36 · 2426 阅读 · 0 评论 -
单变量时间序列预测,可控输入输出步长
我有一列数据想做时间序列预测,有30000+行,用pytorch框架完成,输入是(input_length)时间步,输出是(ouput_length)时间步,数据是csv文件,请帮我写一个框架,完成训练。类定义了一个LSTM模型,其输入和输出大小取决于数据集中的输入长度和输出长度。类来处理数据,该类将一系列时间步作为输入,并将接下来的一系列时间步作为输出,以便进行时间序列预测。函数中,我们使用训练数据集和验证数据集来训练模型,并保存训练后的模型。请完成加载训练结束保存的模型,进行推理部分的代码。原创 2023-06-09 16:42:52 · 414 阅读 · 1 评论 -
Lstm多变量时间序列预测框架|pytorch
我的意见如下:首先,要理清楚两个概念:一是多变量一般是指你在预测时考虑了主变量以外的其他变量,而不是说你要预测多个变量,预测多个变量当然是可以的,但效果特别差,这个我之前还和清华一个搞新能源预测的PhD讨论过,所以我们一般是多变量预测单变量,如果要预测多变量那就训练多个LSTM;二是步长的问题,我这里预测了4步,所以是多步。你所纠结的无非是预测的是下一时刻,然而我却直接经过转换变成了预测四个时刻,但这种写法其实是合理的。多步长预测一般有以下几种方法:第一种就是我这种,直接取最后一步,然后接一个MLP来转换成原创 2022-11-08 09:19:15 · 2774 阅读 · 4 评论 -
Fedformer:Frequency Enhanced DecomposedTransformer for long-term series forecasting[还在学习中···]
Referencefedformer (Frequency Enhanced DecomposedTransformer )时间序列预测 - 知乎#今日论文推荐#【ICML2022】FEDformer:用于长期序列预测的频率增强分解Transformer_wwwsxn的博客-CSDN博客原创 2022-06-09 17:14:10 · 1483 阅读 · 1 评论 -
Informer:比Transformer更有效的长时间序列预测
目录AAAI 2021最佳论文:比Transformer更有效的长时间序列预测BackgroundWhy attentionMethods:the details of InformerSolve_Challenge_1:最基本的一个思路就是降低Attention的计算量,仅计算一些非常重要的或者说有代表性的Attention即可,一些相近的思路在近期不断的提出,比如Sparse-Attention,这个方法涉及了稀疏化Attention的操作,来减少Attention计算量,然后涉及的原创 2022-05-23 19:44:27 · 9990 阅读 · 5 评论 -
Autoformer-代码解读【正在注释代码,敬请等待】
ReferenceInformer源码分析_jrh1223的博客-CSDN博客_informer代码//Autoformer开源项目很多代码沿用了Informer开源项目Informer时间序列深度学习模型AAAI 2021论文之一Informer的主要代码解读、项目运作、自定义数据集使用_Tony学长的博客-CSDN博客_informer源码时间序列预测-深度学习方法_yanglee0的博客-CSDN博客_时间序列预测 深度学习//包含Informer的讲解Informer...原创 2022-05-20 17:08:26 · 3064 阅读 · 2 评论 -
Autoformer: 基于深度分解架构和自相关机制的长期序列预测模型[2021neurips][精读]
目录1.文章要解决的问题:长期时间序列预测(值得研究的方向)2.解决方法(贡献,创新点):深度分解架构(Deep Decomposition Architecture)Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting1.文章要解决的问题:长期时间序列预测(值得研究的方向)长期时间序列预测问题:待预测的序列长度远远大于输入长度,即基于有...原创 2022-05-04 02:08:09 · 2476 阅读 · 3 评论 -
ConvTrans: [Neurips 2019]
论文原名Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting论文粗读原始Transformer中的Self-Attention结构如下:而论文中设计的Convolutional Self-Attention更适合时序...原创 2022-05-02 09:30:11 · 1883 阅读 · 0 评论 -
论文笔记——Deep State Space Models for Time Series Forecasting【亟待解决】
参考资料论文笔记——Deep State Space Models for Time Series Forecasting_sherpahu的博客-CSDN博客原创 2022-04-28 16:29:32 · 723 阅读 · 0 评论 -
【2020】时间卷积网络(TCN)论文解读
参考资料时间序列预测——时序卷积网络(TCN)_行者无疆_ty的博客-CSDN博客_tcn预测代码 //上项目TCN深入分析(更新于2021-06-02) - 知乎 //讲的很细很到位,配官方代码链接时间卷积网络TCN:时间序列处理的新模型 - 知乎 //简洁,适合看懂全文后再从整体把握TCN论文及代码解读总结_我是chios的博客-CSDN博客_tcn代码 //配图很好,有动图方便理解...原创 2022-04-26 20:14:44 · 1442 阅读 · 0 评论 -
time prediction——transformer
参考资料如何利用Transformer建立时间序列预测模型_deephub的博客-CSDN博客_transformer时间序列预测时间序列预测方法之 Transformer_虚胖一场的博客-CSDN博客_transformer时间序列预测Transformer的PyTorch实现(超详细)_数学家是我理想的博客-CSDN博客_pytorch实现transformer史上最小白之Transformer详解_Stink1995的博客-CSDN博客_transformer神经网络...原创 2022-04-18 15:28:24 · 435 阅读 · 0 评论