
NLP与推荐系统
文章平均质量分 52
普通下游
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
Transformer论文粗读[Neurips 2017]最佳论文
1.Attention first show is in Seq2Seq architecture[Year2015]2.Self-Attention first show is in Lstm network[Year2016]Attention is all you need首先咱们回归一下Attention for Rnn(attention in Seq2Seq)首先,Seq2Seq这个结构由Encoder和Decoder构成,Encoder有m个输入向量(x1,x2,...原创 2022-04-29 01:54:16 · 1565 阅读 · 0 评论 -
BERT -Bidirectional Encoder Representation from Transformers[2018GoogleLab]
理论代码开源地址:后期整理自己的基于Bert的项目李沐老师讲bert下面精彩的留言 ReferenceBERT 论文逐段精读【论文精读】_哔哩哔哩_bilibili //视频BERT 论文逐段精读【论文精读】 - 哔哩哔哩 //笔记什么是BERT? - 知乎...原创 2022-04-06 15:00:48 · 1805 阅读 · 0 评论 -
编码器解码器架构、Seq2Seq简要笔记
编码器解码器架构 后续自然语言处理都基本使用这个架构来实现的Seq2Seq最早是用来做机器翻译的,现在用Bert比较多,Seq2Seq是一个Encoder-Decoder的架构,Seq2Seq模型的编码器使用的Rnn,解码器也是Rnn,编码器把最后那个hidden state传给解码器双向Rnn经常用在encoder里面(给一个句子过来正向看一下,反向看一下),decoder需要预测,decoder不需要双向,解码器也是一个Rnn输出,S...原创 2022-03-28 00:25:02 · 1887 阅读 · 0 评论 -
注意力机制中的文本(上下文)向量[Context vector]【亟待解决】
1.无注意力机制的Context vector作用提供全局信息。 很清楚,这种定长的context vector设计有个很致命的问题,无法记忆长句子。当处理完所有输入序列后,模型对最初的输入单词已经**“忘得差不多了”**。也就是编码器输出的context vector并不能很好地表征长句子的开头部分信息。所以注意力机制就是为了解决这个问题提出的。最初提出注意力机制就是为了解决神经机器翻译任务中长的源句子的记忆问题。注意力机制的做法并不要创建一个与编码器最后一个隐状态(last hidden..原创 2022-05-01 08:00:58 · 2686 阅读 · 0 评论 -
Evaluaion mark in natural language processing field//updating
1.BleuBleu[1]是IBM在2002提出的,用于机器翻译任务的评价,发表在ACL,引用次数10000+,原文题目是“BLEU: a Method for Automatic Evaluation of Machine Translation”。它的总体思想就是准确率,假如给定标准译文reference,神经网络生成的句子是candidate,句子长度为n,candidate中有m个单词出现在reference,m/n就是bleu的1-gram的计算公式。BLEU还有许多变种。根据n-gr原创 2022-04-22 19:58:49 · 145 阅读 · 0 评论 -
Keras embedding层的理解与使用
看了很多博客没有解释清楚Embedding层input_dim的意思,下面这篇博客我认为是解释清楚了,欢迎借鉴:keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=Non原创 2022-04-12 10:32:02 · 2929 阅读 · 0 评论 -
MAE——「Masked Autoencoders Are Scalable Vision Learners」
这次,何凯明证明让BERT式预训练在CV上也能训的很好。论文「Masked Autoencoders Are Scalable Vision Learners」证明了 masked autoencoders(MAE) 是一种可扩展的计算机视觉自监督学习方法。这项工作的意义何在?讨论区ReferenceMAE 论文逐段精读【论文精读】_哔哩哔哩_bilibili //视频MAE 论文逐段精读【论文精读】 - 哔哩哔哩 //笔记CV大神何恺明最新一作:视觉预训练新范式MA..原创 2022-04-06 20:19:19 · 1688 阅读 · 0 评论 -
Bilstm+crf ner[pytorch,keras]
Reference基于keras的BiLstm与CRF实现命名实体标注 - 帅虫哥 - 博客园原创 2022-03-30 09:22:08 · 1219 阅读 · 0 评论 -
服装分类推荐(网页展示+Pytorch图像分类)
数据集数据集为某宝取出来的图片,通过人工整理放进对应种类文件夹,一共10类,本项目数据集并不开源,但找了一个替代数据集供给大家使用。代码工程开源地址原创 2022-03-17 09:33:57 · 1837 阅读 · 1 评论 -
各种序列标注的介绍
参考资料Jiagu: Jiagu深度学习自然语言处理工具 知识图谱关系抽取 中文分词 词性标注 命名实体识别 情感分析 新词发现 关键词 文本摘要 (gitee.com)(269条消息) 序列标注中的BIO标注介绍_HappyRocking的专栏-CSDN博客_bio标注//清晰易懂...原创 2022-03-12 10:00:19 · 323 阅读 · 0 评论 -
实体命名与关系抽取
参考资料知识抽取-实体及关系抽取 - 知乎信息抽取——关系抽取-博客园原创 2022-02-10 13:01:34 · 214 阅读 · 0 评论 -
知识图谱概述笔记
知识图谱本质上基于图的语义网络,表示实体和实体之间的关系。资源链接:还在审核中参考资料第一讲 知识图谱原理与应用概述-北京大学邹磊教授_哔哩哔哩_bilibili原创 2022-01-15 10:40:25 · 414 阅读 · 0 评论 -
编辑距离——Minimum Edit Distance
“编辑距离是针对二个字符串(例如英文字)的差异程度的量化量测,量测方式是看至少需要多少次的处理才能将一个字符串变成另一个字符串。编辑距离可以用在自然语言处理中,例如拼写检查可以根据一个拼错的字和其他正确的字的编辑距离,判断哪一个(或哪几个)是比较可能的字。DNA也可以视为用A、C、G和T组成的字符串,因此编辑距离也用在生物信息学中,判断二个DNA的类似程度。”参考资料编辑距离_百度百科详解编辑距离(Edit Distance)及其代码实现 - 简书...原创 2022-01-04 21:10:35 · 343 阅读 · 0 评论 -
TF-IDF笔记整理
TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF是词频(Term Frequency),IDF是逆文本频率指数(Inverse Document Frequency)。还是比较简单的,整理了资料供大家观看。tf(term frequency )-统计词频idf(inverse document frequency)-逆文档频率比如在多篇文档中一个词经常出现像to,I,is,这种词语不能作为关键词原创 2022-01-02 10:58:42 · 718 阅读 · 0 评论 -
课堂作业-文本摘要网页端的demo
NLP文本摘要网页demo介绍本作业来自在国科大进行教授自然语言处理的清华教授刘洋老师所布置,由成员蒋茂苇、姜文康共同完成。 软件架构文本摘要模型初步来自huggingface的transformers,通过API调用sshleifer/distilbart-cnn-12-6模型,[本模型开源地址(http://huggingface.co/sshleifer/distilbart-cnn-12-6),本项目模型推理代码使用Python独立完成。除了在本地IDE环境运行Python文件完成模型推理原创 2021-12-18 16:18:39 · 330 阅读 · 0 评论 -
一步一步从理论到实践实现textrank
前面写了一篇关于textrank的资料,几乎只是资料整理,方便大家查看,花了两天时间从头到尾去把textrank拉通了一遍,最后看了一篇代码(链接1),这个仓库里面的实现很接地气(能让人看懂,但是我去看仓库里面的提问到2021年几乎没有回答,owner应该是没有进行维护了,讲他们重新实现了该算法在genism里面),才发现里面的知识不只是算法公式这些理论,你要是想通过代码实现是另外一回事,下方我会贴图给大家看看真正开发原创代码的人数学功底在那(图),有调text4rank包的讲的比较清楚(链...原创 2021-12-07 16:23:46 · 934 阅读 · 0 评论 -
Word-embedding的资料整理
Word2Vec:NLP里面,最细粒度是词语,词语组成句子,句子组成段落再篇章再文档,因此处理 NLP 的问题,首先就要对词语进行处理,有万人皆知的one-hot,还有在NLP大放异彩的Word2Vec等等...原创 2021-11-27 10:28:17 · 527 阅读 · 0 评论 -
文本摘要(未完待续)
文本摘要抽取式(套用链接一说法)文本摘要的目标是将长文本进行压缩、归纳和总结,从而形成具有概括性含义的短文本。根据文档个数的不同,文本摘要任务可以分为单文档摘要和多文档摘要。根据摘要方法的不同,文本摘要任务又可以分为抽取式方法和生成式方法。由于抽取式方法发展较早,且目前技术较为成熟,因此在业界被广泛的应用。抽取式方法是一种直接从原文中选择若干条重要的句子,并对它们进行排序和重组而形成摘要的方法。通常而言,抽取式方法可以分为两大类:无监督抽取式方法和有监...原创 2021-10-24 18:50:34 · 259 阅读 · 0 评论 -
文本摘要网页演示demo
NLP文本摘要网页demo开源地址:nlp文本摘要网页演示demo介绍本作业来自在国科大进行教授自然语言处理的清华教授刘洋老师所布置,由成员蒋茂苇、姜文康共同完成。 :two_men_holding_hands: 软件架构文本摘要模型初步来自huggingface的transformers,通过API调用sshleifer/distilbart-cnn-12-6模型,[本模型开源地址(http://huggingface.co/sshleifer/distilbart-cnn-12-6),本项原创 2021-10-24 11:24:36 · 552 阅读 · 0 评论 -
NLP-API
1.腾讯云的NLP-API,支持各种语言的sdk,如python、java等,非常方便。2.Transformers的API,大神直接上传模型有可以调用的API,直接使用非常方便,现在hugging-face是github增长速度最快的项目之一了,你不想试试吗。...原创 2021-09-21 10:39:14 · 365 阅读 · 0 评论 -
Keras使用tensorboard
要做个文档报告,需要产出模型图,于是用了各种办法,各种碰壁,最后用到了tensorboard.有缘人想多捣鼓捣鼓的参考以下链接:1.keras 打印模型图 - yjy888 - 博客园from keras.utils import plot_modelplot_model(model,to_file='model_auth.png',show_shapes=True)#show_shapes=True可以把输入输出的shape一起打印注意,最好是给每个层命名,命名好之后打印出来原创 2021-09-20 13:42:14 · 979 阅读 · 0 评论 -
时间序列预测分析[Time series prediction method]
Reason:彭哥老师给的项目,他没时间做,帮他做做,这部分东西我也不太懂,学习慢慢做,那里都有这种老师,清华也一样,可以拿习惯了当作理由,我不反对。What白话1:时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。首先需要明确一点的是,时间序列可以分为平稳序列,即存在某种周期,季节性及趋势的方...原创 2021-08-29 08:27:26 · 1813 阅读 · 1 评论 -
Hugging-Face(NLP):章节检测【 Sharing models and tokenizers】
需要实现那个功能再去找到相应部分代码即可。原创 2021-08-10 15:37:50 · 88 阅读 · 0 评论 -
深度学习产品部署应用到JAVA,开始JAVA之路- 记之
知乎上班的一个老哥说,java涉及产品上线,各大厂产品上线都是c++,出了百度独树一帜用c++。刷算法:C++ 工作:Java某网友:我早期也是用Java的,后来改成cpp了。算法和编程语言关系不太,用c++的原因我觉得主要有:1、Java的变量需要写成static或者创建类实例,cpp在main函数外直接就是全局变量。2、cpp对整数可以引用,Java必须用类,而Interger类还是不可变的,所以想实现引用必须定义一个类。3、Java输入输出相对麻烦4、Java有BigInteg.原创 2021-08-10 10:31:28 · 387 阅读 · 0 评论 -
Hugging-Face(NLP):章节检测【Fine-tuning a pretrained model】
这道题正确避开正确答案,伞兵。原创 2021-08-08 22:06:18 · 119 阅读 · 0 评论 -
Glue benchmark Dataset [NLP-Dataset]
原创 2021-08-06 15:26:19 · 381 阅读 · 0 评论 -
Hugging-Face(NLP):章节检测【Transformers】
Transformersend of chapter quiz:大意了····枯了错的多啊,基础不牢,地动山摇。原创 2021-08-06 13:17:00 · 149 阅读 · 0 评论 -
Hugging-Face(NLP):章节检测【知识点】
虽然都是一些很基础的问题,但给的解释很通俗易懂(TMD就是说白了,答案解析是人话),故记之(那还能咋滴)。解码器每日一句:不要拿别人的过错来惩罚自己。...原创 2021-08-03 16:41:03 · 136 阅读 · 0 评论 -
GLUE任务内容及数据集简介【转载by思考实践】
通常来说,NLP可以分为自然语言理解(NLU)和自然语言生成(NLG)。在NLU方面,我们拿时下最流行的GLUE(General Language Understanding Evaluation)排行榜举例,其上集合了九项NLU的任务,分别是CoLA(The Corpus of Linguistic Acceptability):纽约大学发布的有关语法的数据集,该任务主要是对一个给定句子,判定其是否语法正确,因此CoLA属于单个句子的文本二分类任务; SST(The Stanford Sentime转载 2021-08-03 09:51:19 · 332 阅读 · 0 评论 -
NLP-notebook-2[bert-transformer]
讲解Bert最基础的模型Bert_base,Bert最早2018年由google提出来,图片有论文网站https://arxiv.org/abs/1810.04805BERT,即双向transformer编码表达,是近年来很火的自然语言处理模型。在Bert网络当中,transformer结构是一个基本单元,把多个这样的基本单元连接起来,就是BERT的算法模型。Bert 一开始在SquAD2.0的benckmark(中文翻译:基准测试)大放异彩,可以看见在Leaderboard上面bert在这原创 2021-08-02 11:34:15 · 139 阅读 · 0 评论 -
NLP-notebook-1
1.NLP发展历程2001(nnlm)→2013(Word2vec是Word Embedding方式之一,nlp任务预训练的配)→2014(Seq2Seq:基于rnn Encoder-Decoder的算法,主要用于机器翻译)→2015(attention mechanism:对输入的每个元素考虑不同的权重参数,从而更加关注与输入的元素相似的部分,抑制其它无用的信息)→2017(Transformer:摒弃了传统的CNN和RNN,使用全Attention机制,广泛用于NLP各领域)→2018预训练原创 2021-08-01 21:06:11 · 178 阅读 · 0 评论 -
NLP面试(二)
基础Python内存管理的方式 参考答案机器学习逻辑回归完整推导过程 逻辑回归属于线性分类器还是非线性分类器?(同属于广义线性模型) 朴素贝叶斯为什么朴素?(假设特征之间相互独立) 介绍一下SVM核函数 MLP和MAP的区别(MAP加入了先验信息) svm如何处理多分类(一对多法设计k个分类器,一对一法设计k(k-1)/2个分类器) svm对缺失数据敏感吗,为什么,决策树呢。(svm没有处理缺失数据的方法,决策树有) 为什么svm采用最大间隔(最大间隔得到决策边界是唯一的,具有鲁棒原创 2021-06-25 09:33:52 · 219 阅读 · 0 评论 -
NLP面试(一)
今天面试了两家公司,面的是自然语言处理算法工程实习生,也是我读研以来做算法相关的第一份实习。上午面的是阿博茨科技,下午面的是滴滴出行。以下是面试题,其实都是基础,感觉自己确实要加强基础。阿博茨:1.逻辑回归属于线性分类器还是非线性分类器?2.朴素贝叶斯为什么朴素?3.介绍一下SVM核函数4.决策树和随机森林的区别,随机森林“随机”体现在哪里?5.【开放题】使用正则表达式从简历中抽取姓名和邮箱滴滴出行:1.用两个栈实现一个队列操作,实现push、pop、len操作2原创 2021-06-24 16:33:32 · 309 阅读 · 0 评论 -
线性回归, 逻辑回归和线性分类器
线性回归, 逻辑回归和线性分类器线性回归, Linear Regression逻辑回归, Logistic Regression线性分类器, Linear Classifier逻辑分类器, Logistic Classifier. 注意,这个名词是我在文章中为了方便说明问题造出来的.线性回归可以看作一个Perceptron, 激活函数是identical, 即f(x)=xf(x)=x. 将逻辑回归也可以看作一个Perceptron, 不同的是使用了sigmoid激活函数.一般的说法是, .转载 2021-06-24 13:27:14 · 696 阅读 · 0 评论 -
AB-test
A / B测试,即有两个即将面对大众的设计版本(A和B)。通过小范围发布,得到并比较这两个版本之间你所关心的数据(转化率,业绩,跳出率等),最后选择效果最好的版本。拓展资料:对于互联网产品来说,通过A/B测试提升点击转化率,优化获客成本已得到越来越多的关注。以获客环节为例:许多产品都会在百度、头条等渠道投放落地页广告,以完成新用户的注册转化,而落地页效果的好坏,会直接影响转化率和获客成本。以每月200万投放费用为例,如果通过A/B测试将落地页的注册转化率有效提升20%,相当于每月能多获得价值原创 2021-06-24 10:30:08 · 213 阅读 · 0 评论 -
NLP与推荐系统
当下推荐系统行业比较hot,这个行业体量也比较大,长期活跃应该是个趋势,与后期研究生阶段研究方向比较相关,故作了解。聊聊NLP和推荐系统的选择我觉得NLP和推荐岗位后续的发展应该是:NLP岗位其实更适合去做研究。因为其评价指标相对单一,好就是好不好就是不好,并且好的模型效果对算法实时性没有推荐系统要求的高。模型fancy,想法work,基本上就是一篇文章。在公司基本上是做基础功能支持,相比推荐的话,更容易往细致做,因为nlp评价指标相对稳定,不会出现线下和线上gap很大的情况(我猜测),更多的精原创 2021-06-24 10:27:55 · 1244 阅读 · 0 评论