
Robotics
文章平均质量分 55
Robotics
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
VIMA中有价值的问题 #持续更新
对于以对象为中心的表示,如第4节“标记化”中所述,我们还对边界框坐标进行编码。然后将这些特征与对象的图像特征融合以提供对象标记。原创 2023-12-18 10:15:52 · 1070 阅读 · 0 评论 -
人形机器人的发展前景
ReferenceHumanoids ready to take first steps (therobotreport.com) 机器人行业深度报告:人形机器人大时代来临,关注各环节产业机遇 (baidu.com) 大模型赋能 人形机器人加速产业落地_中证网 (cs.com.cn)超详细对比!一文读懂近年几款热门人形机器人产品 (baidu.com)原创 2023-08-24 16:19:21 · 199 阅读 · 0 评论 -
最新最全大语言模型(LLM)与机器人结合文献及其代码
GitHub - GT-RIPL/Awesome-LLM-Robotics: A comprehensive list of papers using large language/multi-modal models for Robotics/RL, including papers, codes, and related websites GitHub - jrin771/Everything-LLMs-And-Robotics: The world's largest GitHub Reposit原创 2023-07-12 15:13:10 · 1761 阅读 · 0 评论 -
Imitation Learning 入门篇(一)
参考资料中有李老师的视频与网友做的笔记,很详细,相信能够帮助需要的朋友。原创 2023-07-07 10:35:25 · 242 阅读 · 0 评论 -
UR5机器人示教器使用——可视化控制部分(非编程)
② 逆向控制:TCP(Tool Center Position,工具中心位置),控制TCP位置或者方向,也就是直接以末端执行器为对象,直接控制他的位置或者方向,但这个过程需要逆向求解各个关节的运动来达到,只是这个过程被示教器内嵌的工具完成了。例如,在机器人装配和加工中,反向运动学可以根据任务要求计算出机器人关节的运动,以便机器人能够自动完成装配和加工任务。通过逆向求解,可以在给定目标位置和姿态的情况下,计算出机器人关节角度,然后将其输入到机器人控制系统中,使机器人能够准确地达到所需位置和姿态。原创 2023-06-28 20:39:22 · 2407 阅读 · 0 评论 -
从几千个网址里筛选出来的55个非常有意思的“机器人”网站(转载)
视频:(感谢这位兄弟)55个非常有意思的“机器人”网站,从几千个网址里筛选出来的_哔哩哔哩_bilibili 网页导出: Stanford Robotics LabFeatured Projects - The Robotics Institute Carnegie Mellon UniversityRobot Locomotion GroupIHMC Robotics LabRobotics - IITDLR - Institute of Robotics and Mechatronics - Robot原创 2023-06-23 14:35:09 · 264 阅读 · 0 评论 -
机器人——正向运动学(Forward Kinematics)与逆向运动学(Inverse Kinematics)
正向运动学是指从机器人的关节运动推导出末端执行器的运动的过程,也就是从机器人的关节坐标计算出末端执行器的位置和姿态信息的过程。反向运动学:假设我们需要让机器人的末端执行器移动到一个特定的位置和姿态,已知机器人的结构和关节运动范围,我们可以通过反向运动学计算出每个关节应该旋转的角度,以实现末端执行器的目标位置和姿态。正向运动学:假设机器人3个关节的角度分别为30度、45度和60度,已知机器人末端执行器与机器人底座的相对位置和姿态,我们可以通过正向运动学计算出末端执行器的位置和姿态信息。原创 2023-06-23 13:41:55 · 8044 阅读 · 0 评论 -
TidyBot(Personalized Robot Assistance with Large Language Models)|大语言模型结合机器人的开源工作|工作解读与复现
为了使机器人能够有效地个性化物理援助,它必须学习用户偏好,以便将其广泛地应用于未来的情境中。在这项工作中,我们研究了机器人清理家庭的个性化问题。机器人可以通过收拾物品并将它们放好来整理房间。一个关键的挑战是确定每个物品的正确放置位置,因为人们的偏好可以根据个人品味或文化背景而大不相同。例如,一个人可能更喜欢把衬衫放在抽屉里,而另一个人可能更喜欢把它们放在架子上。我们的目标是建立能够从与特定人互动的先前示例中学习这些偏好的系统。我们展示了机器人可以将基于语言的规划和感知与大型语言模型(LLMs)的少量摘要能力原创 2023-06-07 13:01:51 · 619 阅读 · 0 评论 -
AI for Robotics
基于当前AI技术实现机器人觉醒的可能性探讨_哔哩哔哩_bilibili原创 2023-06-07 12:52:03 · 115 阅读 · 0 评论