
LangChain
文章平均质量分 55
Connect AI with almost anything.
思考实践
以身作则,静待花开。长期主义,宇宙主义,价值导向。多角度分析问题,积极解决问题,不要停下来。THU-phd,CAS-master.
展开
-
LangChain-Evaluation—如何评估LLM及其应用(三)
在开始项目之前,您通常没有大量数据来评估您的链/代理。这通常是因为大型语言模型(大多数链/代理的核心)是出色的少镜头(few-shot)和零镜头(zero-shot)学习者, 这意味着您几乎总是能够开始执行特定任务(文本到SQL,问答等),而无需示例的大型数据集。这与传统的机器学习形成鲜明对比,在传统的机器学习中,你必须首先收集一堆数据点。第一个方案是不使用度量指标,而是仅依赖肉眼观察结果,以便了解链/代理的性能。为此,我们有几个不同的链和提示,旨在解决这个问题。,但我们非常希望这是社区的努力。原创 2023-06-30 16:05:29 · 2225 阅读 · 0 评论 -
GPT-4(THUDM) + LangChain >> Personalized expert AI assistant.(本地知识库教程)
GPT-4(THUDM) + LangChain >> Personalized expert AI assistant.(本地知识库教程)原创 2023-06-12 11:08:51 · 1679 阅读 · 0 评论 -
目前全网LangChain最全干货整理||推荐给有缘人
LangChain资料整理。LangChain资料整理。原创 2023-06-27 20:59:30 · 772 阅读 · 0 评论 -
LangChain-Agent自定义Tools类 ——输入参数篇(二)
后期关注结构化输出,方便作为借口提供给其他下游应用。原创 2023-06-27 14:47:59 · 5394 阅读 · 3 评论 -
LangChain-Agent自定义Tools类 ——基础篇(一)
【代码】LangChain-Agent自定义Tools类 ——基础篇(一)原创 2023-06-27 11:31:14 · 5721 阅读 · 0 评论 -
Langchain-简介(省流:连接LLM与你先要的功能的中间件)
随着ChatGPT等大型语言模型(LLM)的发布,应用开发者越来越倾向于将LLM集成到自己的应用中。然而,由于LLM生成结果的不确定性和不准确性,目前还无法仅依靠LLM提供智能化服务。因此,LangChain应运而生,其主要目标是将LLM与开发者现有的知识和系统相结合,以提供更智能化的服务。LangChain是一个开源的应用开发框架,目前支持Python和TypeScript两种编程语言。它赋予LLM两大核心能力:数据感知,将语言模型与其他数据源相连接;代理能力,允许语言模型与其环境互动。LangCha原创 2023-05-25 14:24:09 · 898 阅读 · 0 评论