AI大模型分类以及Prompt优化技巧

目录

 

一、AI大模型分类

1、按模态分类

2、按开源性分类

3、按规模分类

4、按用途分类

如何对比和选择大模型

二、Token

如何计算 Token

如何估算Token成本

三、Prompt工程

Prompt优化技巧

基础提示技巧

1、明确指定任何和角色

2、提供详细说明和具体示例

3、使用结构化格式引导思维

进阶提示技巧

1、思维链提示法

2、 少样本学习

3、分步骤指导

4、自我评估和修正

5、知识检索和引用

6、多视角分析

7、多模态思维

提示词调试和优化

1、迭代提示词优化

2、边界测试

3、提示词模板化

4、错误分析和修正


一、AI大模型分类

了解AI大模型的分类有助于我们进行大模型的技术选型,可以从模态、开源性、规模、用途等角度进行划分。

1、按模态分类

  • 单模态模型:仅处理单一类型的数据,如纯文本(早期的GPT-3)
  • 多模态模型:能够处理多种类型的信息
    文本+图像:GPT-4V、Gemini、Claude 3
    文本+音频+视频:GPT-40

2、按开源性分类

  • 闭源模型:不公开模型权重和训练方法
    代表:GPT-4, Claude, Gemini
    特点:通常通过API访问,付费使用
  •  开源模型:公开模型权重,允许下载和自行部署
    代表: LIamaZF|, Mistral, Falcon
    特点:可以本地部署,自由调整,但通常性能略逊于同等规模闭源模型

3、按规模分类

  • 超大规模模型:参数量在数千亿到数万亿
    代表:GPT-4(1.76T 参数)
    特点:能力强大,但需要大量计算资源
  • 中小规模模型:参数量在几十亿到几百亿
    代表:Llama 3(70B 参数)、Mistral 7B
    特点:能在较普通的硬件上运行,适合特定任务的精调

4、按用途分类

  • 通用模型:能处理广泛的任务
    代表: GPT-4, Claude 3, Gemini
  •  特定领域模型:针对特定领域优化
    医疗:Med-PaLM 2
    代码:CodeLlama, StarCoder
    科学:Galactica

如何对比和选择大模型

维度类别具体评估
功能支持维度多模态嫩能力
工具使用能力函数调用支持,工具集成能力,外部API连接能力
上下文窗口大小输入上下文长度(4k至128k tokens)长文档处理能力
指令遵循能力复杂指令处理能力,多步骤任务执行能力,回答格式控制能力
性能指标维度准确性
响应质量输出流畅与连贯性,回答相关性与深度,语言表达自然度
知识时效性知识截止日期,更新频率
部署与集成维度部署方式
API接口

接口稳定性和可靠性,SDK支持情况,开发框架集成

并发处理能力请求吞吐量,并发请求处理能力
商业与合规维度成本效益
数据安全与隐私数据使用政策,是否支持不保存用户数据,企业级安全合规
法律合规性地区可用性,版本与知识产权问题,内容安全审查机制
生态与支持维度社区支持
文档完善度API文档质量,示例代码丰富度
技术支持官方支持渠道,响应时间

其中,对大多数开发着来讲,更关注的是 准确性+功能支持+性能+成本

二、Token


Token 是大模型处理文本的基本单位,可能是单词或标点符号,模型的输入和输出都是按 Token 计算的,一般 Token 越多,成本越高,并且输出速度越慢。


如何计算 Token

首先,不同大模型对 Token 的划分规则略有不同,比如根据 OpenAI 的文档:

  • 一个token大约相当于 4 个字符或约0.75个英文单词
  • 一个汉字通常会被编码为 1-2个 token
  • 空格和标点:也会计入 token 数量
  • 特殊符号和表情符号:可能需要多个 token 来表示

实际应用中,更推荐使用工具来估计 Prompt的 Token 数量,比如:

OpenAI Tokenizer 适用于OpenAI模型的官方Token计算器

非官方的Token计算器

如何估算Token成本

公式:总成本=(输入Token数 x 输入单价)+(输出Token数 x 输出单价)

不同的模型计费方式不一样,需要阅读官方的文档标准,比如阿里系大模型:

建议估算成本时,多比较其他大模型价格,且列一个详细的表格

三、Prompt工程

Prompt 工程(Prompt Engineering)又叫提示词工程,简单来说,就是输入给 AI的指令

设计 Prompt 是一门艺术,高质量的 Prompt 可以显著提升 AI 输出的质量,因此我们需要重点掌握Prompt 优化技巧。

基础提示技巧

1、明确指定任何和角色

为Al提供清晰的任务描述和角色定位,帮助模型理解背景和期望。

系统:你是一位经验丰富的Python教师,擅长向初学者解释编程概念。
用户:请解释 Python 中的列表推导式,包括基本语法和 2-3 个实用示例。
2、提供详细说明和具体示例

提供足够的上下文信息和期望的输出格式示例,减少模型的不确定性。

请提供一个社交媒体营销计划,针对一款新上市的智能手表。计划应包含:
1. 目标受众描述
2. 三个内容主题
3. 每个平台的内容类型建议
4. 发布频率建议

示例格式:
目标受众: [描述]
内容主题: [主题1], [主题2], [主题3]
平台策略: [平台] - [内容类型] - [频率]
3、使用结构化格式引导思维

通过列表、表格等结构化格式,使得指令更易理解,输出更有调理

分析以下公司的优势和劣势:
公司: Tesla

请使用表格格式回答,包含以下列:
- 优势(最少3项)
- 每项优势的简要分析
- 劣势(最少3项)
- 每项劣势的简要分析
- 应对建议

4、明确输出格式要求

指定输出的格式、长度、风格等要求,使得更符合预期

撰写一篇关于气候变化的科普文章,要求:
- 使用通俗易懂的语言,适合高中生阅读
- 包含5个小标题,每个标题下2-3段文字
- 总字数控制在800字左右
- 结尾提供3个可行的个人行动建议

进阶提示技巧

1、思维链提示法

引导模型展示推理过程,逐步思考问题,提高复杂问题的准确性。

问题:一个商店售卖T恤,每件15元。如果购买5件以上可以享受8折优惠。小明买了7件T恤,他需要支付多少钱?

请一步步思考解决这个问题:
1. 首先计算7件T恤的原价
2. 确定是否符合折扣条件
3. 如果符合,计算折扣后的价格
4. 得出最终支付金额
2、 少样本学习

通过提供几个输入-输出对的示例,帮助模型理解任务模式和期望输出。

我将给你一些情感分析的例子,然后请你按照同样的方式分析新句子的情感倾向。

输入: "这家餐厅的服务太差了,等了一个小时才上菜"
输出: 负面,因为描述了长时间等待和差评服务

输入: "新买的手机屏幕清晰,电池也很耐用"
输出: 正面,因为赞扬了产品的多个方面

现在分析这个句子:
"这本书内容还行,但是价格有点贵"
3、分步骤指导

将复杂任务分解为可管理的步骤,确保模型完成每个关键环节。

请帮我创建一个简单的网站落地页设计方案,按照以下步骤:

步骤1: 分析目标受众(考虑年龄、职业、需求等因素)
步骤2: 确定页面核心信息(主标题、副标题、价值主张)
步骤3: 设计页面结构(至少包含哪些区块)
步骤4: 制定视觉引导策略(颜色、图像建议)
步骤5: 设计行动召唤(CTA)按钮和文案
4、自我评估和修正

让模型评估自己的输出并进行改进,提高准确性和质量。

解决以下概率问题:
从一副标准扑克牌中随机抽取两张牌,求抽到至少一张红桃的概率。

首先给出你的解答,然后:
1. 检查你的推理过程是否存在逻辑错误
2. 验证你使用的概率公式是否正确
3. 检查计算步骤是否有误
4. 如果发现任何问题,提供修正后的解答
5、知识检索和引用

引导模型检索相关信息并明确引用信息来源,提高可靠性。

请解释光合作用的过程及其在植物生长中的作用。在回答中:
1. 提供光合作用的科学定义
2. 解释主要的化学反应
3. 描述影响光合作用效率的关键因素
4. 说明其对生态系统的重要性

对于任何可能需要具体数据或研究支持的陈述,请明确指出这些信息的来源,并说明这些信息的可靠性。
6、多视角分析

引导模型从不同角度、立场或专业视角分析问题,提供全面见解。

分析"城市应该禁止私家车进入市中心"这一提议:

请从以下4个不同角度分析:
1. 环保专家视角
2. 经济学家视角
3. 市中心商户视角
4. 通勤居民视角

对每个视角:
- 提供支持该提议的2个论点
- 提供反对该提议的2个论点
- 分析可能的折中方案
7、多模态思维

结合不同表达形式进行思考,如文字描述、图表结构、代码逻辑等。

设计一个智能家居系统的基础架构:

1. 首先用文字描述系统的主要功能和组件
2. 然后创建一个系统架构图(用ASCII或文本形式表示)
3. 接着提供用户交互流程
4. 最后简述实现这个系统可能面临的技术挑战

尝试从不同角度思考:功能性、用户体验、技术实现、安全性等。

提示词调试和优化

好的提示词很难一步到位,因此我们要持续优化迭代

1、迭代提示词优化

通过逐步修改和完善提示词,提高输出质量。

初始提示: 谈谈人工智能的影响。

[收到笼统回答后]
改进提示: 分析人工智能对医疗行业的三大积极影响和两大潜在风险,提供具体应用案例。

[如果回答仍然不够具体]
进一步改进: 详细分析AI在医学影像诊断领域的具体应用,包括:
1. 现有的2-3个成功商业化AI诊断系统及其准确率
2. 这些系统如何辅助放射科医生工作
3. 实施过程中遇到的主要挑战
4. 未来3-5年可能的技术发展方向
2、边界测试

通过极限情况测试模型的能力边界,找出优化空间。

尝试解决以下具有挑战性的数学问题:
证明在三角形中,三条高的交点、三条中线的交点和三条角平分线的交点在同一条直线上。

如果你发现难以直接证明:
1. 说明你遇到的具体困难
2. 考虑是否有更简单的方法或特例可以探讨
3. 提供一个思路框架,即使无法给出完整证明
3、提示词模板化

创建结构化模板,便于针对类似任务进行一致性提示,否则每次输出的内容可能会有比较大的区别,不利于调试。

【专家角色】: {领域}专家
【任务描述】: {任务详细说明}
【所需内容】:
- {要点1}
- {要点2}
- {要点3}
【输出格式】: {格式要求}
【语言风格】: {风格要求}
【限制条件】: {字数、时间或其他限制}

例如:
【专家角色】: 营养学专家
【任务描述】: 为一位想减重的上班族设计一周健康饮食计划
【所需内容】:
- 七天的三餐安排
- 每餐的大致卡路里
- 准备建议和购物清单
【输出格式】: 按日分段,每餐列出具体食物
【语言风格】: 专业但友好
【限制条件】: 考虑准备时间短,预算有限
4、错误分析和修正

系统性分析模型回答中的错误,并针对性优化提示词,这一点在我们使用Cursor 等AI开发工具生成代码时非常有用。

我发现之前请你生成的Python代码存在以下问题:
1. 没有正确处理文件不存在的情况
2. 数据处理逻辑中存在边界条件错误
3. 代码注释不够详细

请重新生成代码,特别注意:
1. 添加完整的异常处理
2. 测试并确保所有边界条件
3. 为每个主要函数和复杂逻辑添加详细注释
4. 遵循PEP 8编码规范

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值