目录
一、AI大模型分类
了解AI大模型的分类有助于我们进行大模型的技术选型,可以从模态、开源性、规模、用途等角度进行划分。
1、按模态分类
- 单模态模型:仅处理单一类型的数据,如纯文本(早期的GPT-3)
- 多模态模型:能够处理多种类型的信息
文本+图像:GPT-4V、Gemini、Claude 3
文本+音频+视频:GPT-40
2、按开源性分类
- 闭源模型:不公开模型权重和训练方法
代表:GPT-4, Claude, Gemini
特点:通常通过API访问,付费使用 - 开源模型:公开模型权重,允许下载和自行部署
代表: LIamaZF|, Mistral, Falcon
特点:可以本地部署,自由调整,但通常性能略逊于同等规模闭源模型
3、按规模分类
- 超大规模模型:参数量在数千亿到数万亿
代表:GPT-4(1.76T 参数)
特点:能力强大,但需要大量计算资源 - 中小规模模型:参数量在几十亿到几百亿
代表:Llama 3(70B 参数)、Mistral 7B
特点:能在较普通的硬件上运行,适合特定任务的精调
4、按用途分类
- 通用模型:能处理广泛的任务
代表: GPT-4, Claude 3, Gemini - 特定领域模型:针对特定领域优化
医疗:Med-PaLM 2
代码:CodeLlama, StarCoder
科学:Galactica
如何对比和选择大模型
维度类别 | 具体评估 |
功能支持维度 | 多模态嫩能力 |
工具使用能力 | 函数调用支持,工具集成能力,外部API连接能力 |
上下文窗口大小 | 输入上下文长度(4k至128k tokens)长文档处理能力 |
指令遵循能力 | 复杂指令处理能力,多步骤任务执行能力,回答格式控制能力 |
性能指标维度 | 准确性 |
响应质量 | 输出流畅与连贯性,回答相关性与深度,语言表达自然度 |
知识时效性 | 知识截止日期,更新频率 |
部署与集成维度 | 部署方式 |
API接口 | 接口稳定性和可靠性,SDK支持情况,开发框架集成 |
并发处理能力 | 请求吞吐量,并发请求处理能力 |
商业与合规维度 | 成本效益 |
数据安全与隐私 | 数据使用政策,是否支持不保存用户数据,企业级安全合规 |
法律合规性 | 地区可用性,版本与知识产权问题,内容安全审查机制 |
生态与支持维度 | 社区支持 |
文档完善度 | API文档质量,示例代码丰富度 |
技术支持 | 官方支持渠道,响应时间 |
其中,对大多数开发着来讲,更关注的是 准确性+功能支持+性能+成本
二、Token
Token 是大模型处理文本的基本单位,可能是单词或标点符号,模型的输入和输出都是按 Token 计算的,一般 Token 越多,成本越高,并且输出速度越慢。
如何计算 Token
首先,不同大模型对 Token 的划分规则略有不同,比如根据 OpenAI 的文档:
- 一个token大约相当于 4 个字符或约0.75个英文单词
- 一个汉字通常会被编码为 1-2个 token
- 空格和标点:也会计入 token 数量
- 特殊符号和表情符号:可能需要多个 token 来表示
实际应用中,更推荐使用工具来估计 Prompt的 Token 数量,比如:
OpenAI Tokenizer 适用于OpenAI模型的官方Token计算器
如何估算Token成本
公式:总成本=(输入Token数 x 输入单价)+(输出Token数 x 输出单价)
不同的模型计费方式不一样,需要阅读官方的文档标准,比如阿里系大模型:
建议估算成本时,多比较其他大模型价格,且列一个详细的表格
三、Prompt工程
Prompt 工程(Prompt Engineering)又叫提示词工程,简单来说,就是输入给 AI的指令
设计 Prompt 是一门艺术,高质量的 Prompt 可以显著提升 AI 输出的质量,因此我们需要重点掌握Prompt 优化技巧。
基础提示技巧
1、明确指定任何和角色
为Al提供清晰的任务描述和角色定位,帮助模型理解背景和期望。
系统:你是一位经验丰富的Python教师,擅长向初学者解释编程概念。
用户:请解释 Python 中的列表推导式,包括基本语法和 2-3 个实用示例。
2、提供详细说明和具体示例
提供足够的上下文信息和期望的输出格式示例,减少模型的不确定性。
请提供一个社交媒体营销计划,针对一款新上市的智能手表。计划应包含:
1. 目标受众描述
2. 三个内容主题
3. 每个平台的内容类型建议
4. 发布频率建议
示例格式:
目标受众: [描述]
内容主题: [主题1], [主题2], [主题3]
平台策略: [平台] - [内容类型] - [频率]
3、使用结构化格式引导思维
通过列表、表格等结构化格式,使得指令更易理解,输出更有调理
分析以下公司的优势和劣势:
公司: Tesla
请使用表格格式回答,包含以下列:
- 优势(最少3项)
- 每项优势的简要分析
- 劣势(最少3项)
- 每项劣势的简要分析
- 应对建议
4、明确输出格式要求
指定输出的格式、长度、风格等要求,使得更符合预期
撰写一篇关于气候变化的科普文章,要求:
- 使用通俗易懂的语言,适合高中生阅读
- 包含5个小标题,每个标题下2-3段文字
- 总字数控制在800字左右
- 结尾提供3个可行的个人行动建议
进阶提示技巧
1、思维链提示法
引导模型展示推理过程,逐步思考问题,提高复杂问题的准确性。
问题:一个商店售卖T恤,每件15元。如果购买5件以上可以享受8折优惠。小明买了7件T恤,他需要支付多少钱?
请一步步思考解决这个问题:
1. 首先计算7件T恤的原价
2. 确定是否符合折扣条件
3. 如果符合,计算折扣后的价格
4. 得出最终支付金额
2、 少样本学习
通过提供几个输入-输出对的示例,帮助模型理解任务模式和期望输出。
我将给你一些情感分析的例子,然后请你按照同样的方式分析新句子的情感倾向。
输入: "这家餐厅的服务太差了,等了一个小时才上菜"
输出: 负面,因为描述了长时间等待和差评服务
输入: "新买的手机屏幕清晰,电池也很耐用"
输出: 正面,因为赞扬了产品的多个方面
现在分析这个句子:
"这本书内容还行,但是价格有点贵"
3、分步骤指导
将复杂任务分解为可管理的步骤,确保模型完成每个关键环节。
请帮我创建一个简单的网站落地页设计方案,按照以下步骤:
步骤1: 分析目标受众(考虑年龄、职业、需求等因素)
步骤2: 确定页面核心信息(主标题、副标题、价值主张)
步骤3: 设计页面结构(至少包含哪些区块)
步骤4: 制定视觉引导策略(颜色、图像建议)
步骤5: 设计行动召唤(CTA)按钮和文案
4、自我评估和修正
让模型评估自己的输出并进行改进,提高准确性和质量。
解决以下概率问题:
从一副标准扑克牌中随机抽取两张牌,求抽到至少一张红桃的概率。
首先给出你的解答,然后:
1. 检查你的推理过程是否存在逻辑错误
2. 验证你使用的概率公式是否正确
3. 检查计算步骤是否有误
4. 如果发现任何问题,提供修正后的解答
5、知识检索和引用
引导模型检索相关信息并明确引用信息来源,提高可靠性。
请解释光合作用的过程及其在植物生长中的作用。在回答中:
1. 提供光合作用的科学定义
2. 解释主要的化学反应
3. 描述影响光合作用效率的关键因素
4. 说明其对生态系统的重要性
对于任何可能需要具体数据或研究支持的陈述,请明确指出这些信息的来源,并说明这些信息的可靠性。
6、多视角分析
引导模型从不同角度、立场或专业视角分析问题,提供全面见解。
分析"城市应该禁止私家车进入市中心"这一提议:
请从以下4个不同角度分析:
1. 环保专家视角
2. 经济学家视角
3. 市中心商户视角
4. 通勤居民视角
对每个视角:
- 提供支持该提议的2个论点
- 提供反对该提议的2个论点
- 分析可能的折中方案
7、多模态思维
结合不同表达形式进行思考,如文字描述、图表结构、代码逻辑等。
设计一个智能家居系统的基础架构:
1. 首先用文字描述系统的主要功能和组件
2. 然后创建一个系统架构图(用ASCII或文本形式表示)
3. 接着提供用户交互流程
4. 最后简述实现这个系统可能面临的技术挑战
尝试从不同角度思考:功能性、用户体验、技术实现、安全性等。
提示词调试和优化
好的提示词很难一步到位,因此我们要持续优化迭代
1、迭代提示词优化
通过逐步修改和完善提示词,提高输出质量。
初始提示: 谈谈人工智能的影响。
[收到笼统回答后]
改进提示: 分析人工智能对医疗行业的三大积极影响和两大潜在风险,提供具体应用案例。
[如果回答仍然不够具体]
进一步改进: 详细分析AI在医学影像诊断领域的具体应用,包括:
1. 现有的2-3个成功商业化AI诊断系统及其准确率
2. 这些系统如何辅助放射科医生工作
3. 实施过程中遇到的主要挑战
4. 未来3-5年可能的技术发展方向
2、边界测试
通过极限情况测试模型的能力边界,找出优化空间。
尝试解决以下具有挑战性的数学问题:
证明在三角形中,三条高的交点、三条中线的交点和三条角平分线的交点在同一条直线上。
如果你发现难以直接证明:
1. 说明你遇到的具体困难
2. 考虑是否有更简单的方法或特例可以探讨
3. 提供一个思路框架,即使无法给出完整证明
3、提示词模板化
创建结构化模板,便于针对类似任务进行一致性提示,否则每次输出的内容可能会有比较大的区别,不利于调试。
【专家角色】: {领域}专家
【任务描述】: {任务详细说明}
【所需内容】:
- {要点1}
- {要点2}
- {要点3}
【输出格式】: {格式要求}
【语言风格】: {风格要求}
【限制条件】: {字数、时间或其他限制}
例如:
【专家角色】: 营养学专家
【任务描述】: 为一位想减重的上班族设计一周健康饮食计划
【所需内容】:
- 七天的三餐安排
- 每餐的大致卡路里
- 准备建议和购物清单
【输出格式】: 按日分段,每餐列出具体食物
【语言风格】: 专业但友好
【限制条件】: 考虑准备时间短,预算有限
4、错误分析和修正
系统性分析模型回答中的错误,并针对性优化提示词,这一点在我们使用Cursor 等AI开发工具生成代码时非常有用。
我发现之前请你生成的Python代码存在以下问题:
1. 没有正确处理文件不存在的情况
2. 数据处理逻辑中存在边界条件错误
3. 代码注释不够详细
请重新生成代码,特别注意:
1. 添加完整的异常处理
2. 测试并确保所有边界条件
3. 为每个主要函数和复杂逻辑添加详细注释
4. 遵循PEP 8编码规范