行列式计算
一阶行列式:
det
(
A
)
=
a
\det \left( A \right) = a
det(A)=a
二阶行列式:
det
(
A
)
=
a
11
a
22
−
a
12
a
21
\det \left( A \right) = {a_{11}}{a_{22}} - {a_{12}}{a_{21}}
det(A)=a11a22−a12a21
三阶行列式:
det
(
A
)
=
a
11
a
22
a
33
+
a
12
a
23
a
31
+
a
21
a
32
a
13
−
a
31
a
22
a
13
−
a
21
a
12
a
33
−
a
32
a
23
a
11
\det \left( A \right) = {a_{11}}{a_{22}}{a_{33}} + {a_{12}}{a_{23}}{a_{31}} + {a_{21}}{a_{32}}{a_{13}} - {a_{31}}{a_{22}}{a_{13}} - {a_{21}}{a_{12}}{a_{33}} - {a_{32}}{a_{23}}{a_{11}}
det(A)=a11a22a33+a12a23a31+a21a32a13−a31a22a13−a21a12a33−a32a23a11
高阶行列式:利用行列式展开法则求解,行列式等于它的任一行(列)的各元素与其代数余子式的乘积之和。注:代数余子式
A
i
j
=
(
−
1
)
i
+
j
det
(
M
i
j
)
{A_{ij}} = {\left( { - 1} \right)^{i + j}}\det \left( {{M_{ij}}} \right)
Aij=(−1)i+jdet(Mij),
M
i
j
M_{ij}
Mij为划掉
a
i
j
a_{ij}
aij所在行列所得的
(
n
−
1
)
\left( {n - 1} \right)
(n−1)阶方阵。
det
(
A
)
=
a
i
1
A
i
1
+
a
i
2
A
i
2
+
⋯
+
a
i
n
A
i
n
det
(
A
)
=
a
1
j
A
1
j
+
a
2
j
A
2
j
+
⋯
+
a
n
j
A
n
j
\begin{array}{l} \det \left( A \right) = {a_{i1}}{A_{i1}} + {a_{i2}}{A_{i2}} + \cdots + {a_{in}}{A_{in}}\\ \det \left( A \right) = {a_{1j}}{A_{1j}} + {a_{2j}}{A_{2j}} + \cdots + {a_{nj}}{A_{nj}} \end{array}
det(A)=ai1Ai1+ai2Ai2+⋯+ainAindet(A)=a1jA1j+a2jA2j+⋯+anjAnj
Matlab求解函数:
det
(
A
)
:返回方阵
A
的行列式
\det \left( A \right):返回方阵 A 的行列式
det(A):返回方阵A的行列式
行列式性质
性质1:矩阵与转置矩阵行列式相等。
性质2:互换行列式的两行(列),行列式变号。
性质3:行列式某行(列)的公因子可以提出去。
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
k
a
i
1
k
a
i
2
⋯
k
a
i
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
=
k
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
a
i
1
a
i
2
⋯
a
i
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
\left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {k{a_{i1}}}&{k{a_{i2}}}& \cdots &{k{a_{in}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right| = k\left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right|
a11⋮kai1⋮an1a12⋮kai2⋮an2⋯⋯⋯a1n⋮kain⋮ann
=k
a11⋮ai1⋮an1a12⋮ai2⋮an2⋯⋯⋯a1n⋮ain⋮ann
性质4:如果行列式的某行(列)是两项之和,那么行列式等于两个行列式之和。
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
a
i
1
+
a
i
1
′
a
i
2
+
a
i
2
′
⋯
a
i
n
+
a
′
i
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
=
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
a
i
1
a
i
2
⋯
a
i
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
+
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
a
i
1
′
a
i
2
′
⋯
a
i
n
′
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
{\left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{i1}} + a_{i1}^\prime }&{{a_{i2}} + a_{i2}^\prime }& \cdots &{{a_{in}} + {a^\prime }_{in}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right|} = \left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right| + \left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {a_{i1}^\prime }&{a_{i2}^\prime }& \cdots &{a_{in}^\prime }\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right|
a11⋮ai1+ai1′⋮an1a12⋮ai2+ai2′⋮an2⋯⋯⋯a1n⋮ain+a′in⋮ann
=
a11⋮ai1⋮an1a12⋮ai2⋮an2⋯⋯⋯a1n⋮ain⋮ann
+
a11⋮ai1′⋮an1a12⋮ai2′⋮an2⋯⋯⋯a1n⋮ain′⋮ann
性质5:行列式某行(列)的倍数加到另一行(列),行列式不变。
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
a
i
1
a
i
2
⋯
a
i
n
⋮
⋮
⋮
a
j
1
+
k
a
i
1
a
j
2
+
k
a
i
2
⋯
a
j
n
+
k
a
i
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
=
∣
a
11
a
12
⋯
a
1
n
⋮
⋮
⋮
a
i
1
a
i
2
⋯
a
i
n
⋮
⋮
⋮
a
j
1
a
j
2
⋯
a
j
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
∣
\left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{j1}} + k{a_{i1}}}&{{a_{j2}} + k{a_{i2}}}& \cdots &{{a_{jn}} + k{a_{in}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right| = \left| {\begin{array}{c} {{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{i1}}}&{{a_{i2}}}& \cdots &{{a_{in}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{j1}}}&{{a_{j2}}}& \cdots &{{a_{jn}}}\\ \vdots & \vdots &{}& \vdots \\ {{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}} \end{array}} \right|
a11⋮ai1⋮aj1+kai1⋮an1a12⋮ai2⋮aj2+kai2⋮an2⋯⋯⋯⋯a1n⋮ain⋮ajn+kain⋮ann
=
a11⋮ai1⋮aj1⋮an1a12⋮ai2⋮aj2⋮an2⋯⋯⋯⋯a1n⋮ain⋮ajn⋮ann
矩阵性质
加法:
A
+
B
=
B
+
A
(
A
+
B
)
+
C
=
A
+
(
B
+
C
)
\begin{array}{l} A + B = B + A\\ \left( {A + B} \right) + C = A + \left( {B + C} \right) \end{array}
A+B=B+A(A+B)+C=A+(B+C)
数乘:
(
α
β
)
A
=
α
(
β
A
)
(
α
+
β
)
A
=
α
A
+
β
A
\begin{array}{l} \left( {\alpha \beta } \right)A = \alpha \left( {\beta A} \right)\\ (\alpha + \beta )A = \alpha A + \beta A \end{array}
(αβ)A=α(βA)(α+β)A=αA+βA
乘法:满足结合律,不满足交换律。
A
B
≠
B
A
(
A
B
)
C
=
A
(
B
C
)
A
(
B
+
C
)
=
A
B
+
A
C
(
A
+
B
)
C
=
A
C
+
B
C
α
(
A
B
)
=
(
α
A
)
B
=
A
(
α
B
)
\begin{array}{l} AB \ne BA\\ \left( {AB} \right)C = A\left( {BC} \right)\\ A\left( {B + C} \right) = AB + AC\\ \left( {A + B} \right)C = AC + BC\\ \alpha (AB) = (\alpha A)B = A(\alpha B) \end{array}
AB=BA(AB)C=A(BC)A(B+C)=AB+AC(A+B)C=AC+BCα(AB)=(αA)B=A(αB)
行列式:
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|{A B}|=|{A}||{B}|
∣AB∣=∣A∣∣B∣
转置:矩阵
A
A
A的转置,记作
A
T
{A^T}
AT
(
A
T
)
T
=
A
(
A
+
B
)
T
=
A
T
+
B
T
(
A
B
)
T
=
B
T
A
T
∣
A
T
∣
=
∣
A
∣
\begin{array}{l} {\left( {{A^T}} \right)^T} = A\\ {\left( {A + B} \right)^T} = {A^T} + {B^T}\\ {\left( {AB} \right)^T} = {B^T}{A^T}\\ \left| {{A^T}} \right| = \left| A \right| \end{array}
(AT)T=A(A+B)T=AT+BT(AB)T=BTAT
AT
=∣A∣
共轭转置:矩阵
A
A
A的共轭转置,记作
A
H
{A^H}
AH
(
A
H
)
H
=
A
(
A
+
B
)
H
=
A
H
+
B
H
(
A
B
)
H
=
B
H
A
H
∣
A
H
∣
=
∣
A
∣
H
(
k
A
)
H
=
k
H
A
H
\begin{array}{l} {\left( {{A^H}} \right)^H} = A\\ {\left( {A + B} \right)^H} = {A^H} + {B^H}\\ {\left( {AB} \right)^H} = {B^H}{A^H}\\ \left| {{A^H}} \right| = {\left| A \right|^H}\\ {\left( {kA} \right)^H} = {k^H}{A^H} \end{array}
(AH)H=A(A+B)H=AH+BH(AB)H=BHAH
AH
=∣A∣H(kA)H=kHAH
逆性质:
(
A
B
)
−
1
=
B
−
1
A
−
1
(
A
T
)
−
1
=
(
A
−
1
)
T
A
可逆
⇔
A
满秩
⇔
∣
A
∣
≠
0
⇔
A
为非奇异矩阵
\begin{array}{l} {\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\\ {\left( {{A^T}} \right)^{ - 1}} = {\left( {{A^{ - 1}}} \right)^T}\\ A可逆 \Leftrightarrow A满秩 \Leftrightarrow \left| A \right| \ne 0 \Leftrightarrow A为非奇异矩阵 \end{array}
(AB)−1=B−1A−1(AT)−1=(A−1)TA可逆⇔A满秩⇔∣A∣=0⇔A为非奇异矩阵
偏导数1:标量对一维矩阵求偏导,
X
X
X为
(
n
×
1
)
\left( {n \times 1} \right)
(n×1)向量。
∂
A
1
×
n
X
X
=
A
T
∂
X
T
A
n
×
1
X
=
A
∂
X
T
A
n
×
n
X
X
=
A
X
+
A
T
X
∂
X
T
A
T
A
X
X
=
2
A
T
A
X
\begin{array}{l} \frac{{\partial {A_{1 \times n}}X}}{X} = {A^T}\\ \frac{{\partial {X^T}{A_{n \times 1}}}}{X} = A\\ \frac{{\partial {X^T}{A_{n \times n}}X}}{X} = AX + {A^T}X\\ \frac{{\partial {X^T}{A^T}AX}}{X} = 2{A^T}AX \end{array}
X∂A1×nX=ATX∂XTAn×1=AX∂XTAn×nX=AX+ATXX∂XTATAX=2ATAX
偏导数2:标量对二维矩阵求偏导,
X
X
X为
(
m
×
n
)
\left( {m \times n} \right)
(m×n)矩阵。
∂
A
1
×
m
X
B
n
×
1
X
=
A
T
B
T
⇔
∂
A
T
X
B
X
=
A
B
T
∂
A
1
×
n
X
T
B
m
×
1
X
=
B
A
⇔
∂
A
T
X
T
B
X
=
B
A
T
\begin{array}{l} \frac{{\partial {A_{1 \times m}}X{B_{n \times 1}}}}{X} = {A^T}{B^T} \Leftrightarrow \frac{{\partial {A^T}XB}}{X} = A{B^T}\\ \frac{{\partial {A_{1 \times n}}{X^T}{B_{m \times 1}}}}{X} = BA \Leftrightarrow \frac{{\partial {A^T}{X^T}B}}{X} = B{A^T} \end{array}
X∂A1×mXBn×1=ATBT⇔X∂ATXB=ABTX∂A1×nXTBm×1=BA⇔X∂ATXTB=BAT
参考文献
参考1:线性代数与空间解析几何(郑宝东)