如何使用 Qwen3 实现 Agentic RAG?

今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。

这里是我们的工具栈:

  • CrewAI用于代理编排。

  • Firecrawl用于网络搜索。

  • LightningAI的LitServe用于部署。

顶部的视频展示了这一过程。

图表显示了我们的Agentic RAG流程:

图片

  • 检索代理接受用户查询。

  • 它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。

  • 写作代理生成响应。

接下来,让我们实现并部署它!

代码稍后在问题中链接。

这里是为我们的Agentic RAG服务的完整代码。

图片

  • setup方法编排代理。

  • decode_request方法准备输入。

  • predict方法调用Crew。

  • encode_response方法发送响应回来。

让我们下面一步一步理解它

Set up LLM

CrewAI与所有流行的LLMs和提供商无缝集成。

这里是通过Ollama设置本地Qwen 3的方式。

图片

Define Research Agent and Task

这个代理接受用户查询,并使用向量DB工具和由Firecrawl驱动的网络搜索工具检索相关上下文。

再次,在LitServe的setup()方法中放入这个:

图片

Define Writer Agent and Task

接下来,写作代理接受研究者代理的见解以生成响应。

我们再次在LitServe的setup方法中添加这个:

图片

Set up the Crew

一旦我们定义了代理及其任务,我们使用CrewAI将它们编排成一个团队,并将其放入一个设置方法中。

图片

Decode request

我们已经编排了Agentic RAG工作流程,该工作流程将在收到请求时执行。

接下来,从收到的请求体中提取用户查询。

检查下面突出显示的代码:

图片

Predict

我们使用解码的用户查询,并将其传递给之前定义的Crew,以从模型生成响应。

检查下面突出显示的代码:

Encode response

这里,我们可以对响应进行后处理并将其发送回客户端。

注意:LitServe内部按顺序调用这些方法:decode_request → predict → encode_request

检查下面突出显示的代码:

图片

我们完成了服务器代码。

接下来,我们有基本的客户端代码来调用我们使用requests Python库创建的API:

图片

完成!

我们已经使用LitServe部署了完全私有的Qwen 3 Agentic RAG。这里是部署的Qwen3 Agentic RAG的回顾。

原文地址:https://blog.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag

### Qwen-VL与RAG技术详解 #### 多模态检索增强生成(Retrieval-Augmented Generation, RAG) 多模态检索增强生成是一种结合了外部知识库的检索能力和神经网络的强大生成能力的技术。对于像Qwen-VL这样的大规模视觉语言模型来说,通过集成RAG可以显著提升理解复杂场景的能力并提供更精准的回答。 #### 技术详情 Qwen-VL采用了一种基于Transformer架构的设计,在此基础上加入了专门针对视觉数据优化的功能模块。当涉及到RAG时,该过程通常分为两步: 1. **检索阶段**:给定一个查询(可能是文本描述或图片),系统会先利用预训练好的编码器来提取特征向量表示;随后这些特征被用来索引预先构建的知识图谱或其他形式的数据集,从中找出最相关的条目。 2. **生成阶段**:接着上述找到的相关信息会被送入解码端作为上下文线索之一参与最终输出序列预测的任务中去。此过程中不仅考虑到了原始输入本身还融合进了额外获取来的背景资料从而使得回复更加全面准确[^2]。 #### 实现方式 为了实现这一目标,开发者们往往会选择如下路径来进行开发工作: - 构建高效的索引结构以便快速定位相似项; - 设计合理的评分函数用于衡量候选对象之间的匹配度高低; - 对于跨媒体类型的情况,则需特别注意如何统一不同源之间存在的差异性问题比如尺度变换、语义鸿沟等挑战[^4]。 此外,考虑到实际应用场景中的性能需求,还需要对整个流程做进一步优化以确保实时响应特性不受影响。这可能涉及GPU加速计算资源分配策略调整等方面的工作。 #### 使用教程 以下是简化版的操作指南供初学者参考学习: ```bash # 安装必要的依赖包 pip install qwen-vl rag-toolkit torch transformers # 加载预训练模型 from qwen_vl import QwenVLModel model = QwenVLModel.from_pretrained('path_to_model') # 准备好要处理的数据样本 (这里假设是一个图像文件) image_path = "example.jpg" # 执行推理操作获得结果 result = model(image=image_path).generate() print(result) ``` 这段代码展示了怎样加载指定版本的Qwen-VL模型并对单张照片执行分析任务的过程。当然真实项目里可能会遇到更多复杂的状况因此建议深入研究官方文档及相关案例加深理解掌握技巧[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值