损失函数篇 | YOLOv5 引入Unified-IoU 高质量目标检测IoU损失


在这里插入图片描述

在这里插入图片描述

论文地址:https://arxiv.org/pdf/2408.06636

开源代码地址:https://github.com/lxj-drifter/UIOU_files


目标检测是计算机视觉领域的重要组成部分,其效果直接由预测框的回归精度决定。作为模型训练的关键,IoU(交并比)很好地展示了当前预测框与真实框(Ground Truth)之间的差异。后续的研究者不断为 IoU 增加更多的考量因素,如中心距离、长宽比等。然而,仅仅细化几何差异是有上限的;此外,这些新的考量指标与 IoU 本身可能存在潜在的关联,简单地加减这些指标可能会导致“过度考虑”的问题。基于此,我

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值