阅读笔记:Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion

本文详细介绍了使用点基表示进行实时3D重建的方法,结合kinectfusion框架,重点讨论了数据融合策略,包括数据一致性检查、点的加权平均以及动态目标的识别和分割。通过点的半径信息来区分稳定点和不稳定点,并利用ICP失配点进行动态目标分割,实现对动态场景的高效重建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion

摘要

算法框架与kinectfusion一致,细节有变化:

  • 用了point-based represention
  • data association方法
  • 点的融合方法
  • 模型点移除
  • 动态目标估计
  • 目标分割方法

代码1

点表达

点不仅是位置信息,还有其他信息。这里半径用来做什么?
在这里插入图片描述
通过 c k c_k c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值