0 简述
点云聚类算法是一种把点云数据集分割成不同类别的算法。它可以有效地检测和识别出空间环境中的物体,从而为更高级的计算机视觉应用提供基础。点云聚类的目的是把点云数据集划分成不同的类别,每个类别包含具有相似特征(这种特征可以是距离、密度、法向量等等)的点。
1 DBSCAN聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的点云聚类算法。理论上它是一种无参数的算法,不需要事先指定聚类的数量,能够自动发现聚类的形状和大小。
算法原理:
DBSCAN算法基于以下两个核心概念:
- 核心对象(CoreObject):如果一个点的邻域内(以该点为圆心,以一定半径ε为半径的圆内)至少包含MinPts个点(包括该点自身),则该点被称为核心对象。
- 直接密度可达(DirectlyDensity-Reachable)