Python点云处理(七)点云聚类算法(上)

23 篇文章 212 订阅 ¥19.90 ¥99.00
本文介绍了Python中点云处理的三种聚类算法:DBSCAN、K-means和OPTICS。DBSCAN是一种无参数的密度基聚类算法,能自动发现聚类形状和大小;K-means是基于距离的聚类,需要预设聚类数量;OPTICS则能自动识别不同密度的聚类,同时检测离群点。
摘要由CSDN通过智能技术生成

0 简述

点云聚类算法是一种把点云数据集分割成不同类别的算法。它可以有效地检测和识别出空间环境中的物体,从而为更高级的计算机视觉应用提供基础。点云聚类的目的是把点云数据集划分成不同的类别,每个类别包含具有相似特征(这种特征可以是距离、密度、法向量等等)的点。


1 DBSCAN聚类算法

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的点云聚类算法。理论上它是一种无参数的算法,不需要事先指定聚类的数量,能够自动发现聚类的形状和大小。

算法原理:

DBSCAN算法基于以下两个核心概念:

  1. 核心对象(CoreObject):如果一个点的邻域内(以该点为圆心,以一定半径ε为半径的圆内)至少包含MinPts个点(包括该点自身),则该点被称为核心对象。
  2. 直接密度可达(DirectlyDensity-Reachable)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Auto工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值