K-means点云聚类算法(python实现)

原理:

  1. 目标:将样本集合划分为 K 个互不相交的子集,每个子集代表一个聚类。
  2. 初始化:随机选择 K 个样本作为初始聚类中心。
  3. 迭代优化:重复以下步骤,直到收敛:
    • 将每个样本分配到最近的聚类中心所在的类别中。
    • 计算每个聚类中心的均值,作为新的聚类中心。
  4. 收敛条件:当聚类中心不再发生变化,或者变化很小,算法收敛。

数学公式:

  1. 样本表示:假设有 m 个样本,每个样本有 n 个特征,用 x ^{^{(i)}} 表示第 i 个样本, x ^{^{(i)}} ∈R^{n}
  2. 聚类中心表示:假设有 K 个聚类中心,用x ^{^{(i)}} 表示第 k 个聚类中心,μ_{k}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值