本教程做了算法改进,使其同样适用于超大的点云数据的配准处理。
一、ICP精配准
1.1 算法概念
点云ICP配准(Iterative Closest Point Registration)是一种将两个或多个点云数据集对齐的算法。其工作原理是通过迭代的方式,找出一个最优的刚体变换矩阵,将一个点云数据集的点对应到另一个点云数据集上的对应点,使得两个点云之间的误差最小化。
1.2 算法流程
为解决超大点云处理过程中,配准时间长、运行内存占用大等问题,在预处理环节独特地加入了下采样算法。首先,通过简化后的点云进行配准,输出配准矩阵,再根据配准矩阵,对简化之前的点云进行坐标变换。具体流程如下:
- 首先,利用Open3D库读取两组需要进行配准的点云数据。
- 接着,简化点云数