Python 点到面的ICP配准算法(同样适用于超大点云)

教程介绍了优化的点到面ICP配准算法,适用于处理超大点云数据。通过引入下采样,解决了配准时间长和内存占用大的问题。算法包括预处理、粗配准和精配准步骤,最终应用变换矩阵于原始点云进行坐标变换。
摘要由CSDN通过智能技术生成

  本教程做了算法改进,使其同样适用于超大的点云数据的配准处理。

一、ICP精配准

1.1 算法概念

  点云ICP配准(Iterative Closest Point Registration)是一种将两个或多个点云数据集对齐的算法。其工作原理是通过迭代的方式,找出一个最优的刚体变换矩阵,将一个点云数据集的点对应到另一个点云数据集上的对应点,使得两个点云之间的误差最小化。

1.2 算法流程

  为解决超大点云处理过程中,配准时间长、运行内存占用大等问题,在预处理环节独特地加入了下采样算法。首先,通过简化后的点云进行配准,输出配准矩阵,再根据配准矩阵,对简化之前的点云进行坐标变换。具体流程如下:

  1. 首先,利用Open3D库读取两组需要进行配准的点云数据。
  2. 接着,简化点云数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶探索站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值