4-三维重建-极几何

三角化

 通过两成像面获取相交的点P*,使得P*距离P距离最小

 

 极几何相关概念

 极线:pe,p'e' ;级点:e,e';

 

 本质矩阵:对规范化摄像机拍摄的两个视点图像间的级几何关系进行代数描述

多视图几何的第三个关键问题:对应关系:已知一个图像中的点p,如何在另外一个图像中找到p点

p' = R * O1+T(R:旋转,T:平移),则可以推出p' = R^{\top}\left(p^{\prime}-T\right),同理可得,O2 = R^{\top}(-T)

  

 基础矩阵:对一般的透视摄像机拍摄的两个视点的图像间的极集合关系进行代数描述

 由本质矩阵p^{\prime T} E p=0\begin{aligned} &p_{c}=K^{-1} p \\ &p_{c}^{\prime}=K^{\prime-1} p^{\prime} \end{aligned}可得到:

p_{c}^{\prime T} E p_{c}=p_{c}^{\prime T}\left[T_{\times}\right] R p_{c}=\left(K^{\prime-1} p^{\prime}\right)^{T} \cdot\left[T_{\times}\right] R K^{-1} p

=p^{\prime T} K^{\prime-T}\left[T_{\times}\right] R K^{-1} p=0

其中令F=K^{\prime-T}\left[T_{\times}\right] R K^{-1},则有p'Fp=0,其中F=基础矩阵

基础矩阵的作用 

 基础矩阵的估计

 \hat{\mathrm{F}}不是我们要求的矩阵,基础矩阵F秩通常为2,而\hat{\mathrm{F}}秩为3,即为满秩

 

 八点法存在精度低的问题

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值