Hoeffding’s Inequality:
Suppose
x
1
,
x
2
,
…
…
x
N
x_1,x_2,……x_N
x1,x2,……xN are independent random variables, and
x
i
∈
[
a
i
,
b
i
]
x_i∈[a_i, b_i]
xi∈[ai,bi],
i
=
1
,
2
,
…
…
,
N
i=1,2,……,N
i=1,2,……,N;
X
ˉ
\bar{X}
Xˉ is the expirical mean of
x
1
,
x
2
,
…
…
x
N
x_1,x_2,……x_N
x1,x2,……xN, namely,
X
ˉ
=
1
N
∑
i
=
1
N
x
i
\bar{X}=\frac{1}{N}\sum_{i=1}^{N}{x_i}
Xˉ=N1∑i=1Nxi, then for any
t
>
0
t>0
t>0, the following inequality holds:
P
[
X
ˉ
−
E
(
X
ˉ
)
≥
t
]
≤
e
x
p
(
−
2
N
2
t
2
∑
i
=
1
N
(
b
i
−
a
i
)
2
)
P[ \bar{X}-E(\bar{X})\geq t ]\leq exp\left(-\frac{2N^2t^2}{\sum_{i=1}^{N}{(b_i-a_i)^2}} \right)
P[Xˉ−E(Xˉ)≥t]≤exp(−∑i=1N(bi−ai)22N2t2)
P
[
E
(
X
ˉ
)
−
X
ˉ
≥
t
]
≤
e
x
p
(
−
2
N
2
t
2
∑
i
=
1
N
(
b
i
−
a
i
)
2
)
P[E(\bar{X})- \bar{X}\geq t ]\leq exp\left(-\frac{2N^2t^2}{\sum_{i=1}^{N}{(b_i-a_i)^2}} \right)
P[E(Xˉ)−Xˉ≥t]≤exp(−∑i=1N(bi−ai)22N2t2)
Hoeffding’s lemma:
Suppose
x
x
x is an random variable,
x
∈
[
a
,
b
]
x∈[a, b]
x∈[a,b], and
E
(
x
)
=
0
E(x)=0
E(x)=0, then for any
t
>
0
t>0
t>0,the following inequality holds:
E
(
e
t
x
)
≤
e
x
p
t
2
(
b
−
a
)
2
8
E(e^{tx})\leq exp\frac{t^2(b-a)^2}{8}
E(etx)≤exp8t2(b−a)2
We prove the lemma first:
Obviously,
f
(
x
)
=
e
t
x
f(x)=e^{tx}
f(x)=etx is a convex function, so for any
α
∈
[
0
,
1
]
α∈[0,1]
α∈[0,1], we have:
f
(
α
x
1
+
(
1
−
α
)
x
2
)
≤
α
f
(
x
1
)
+
(
1
−
α
)
f
(
x
2
)
f(αx_1+(1-α)x_2)\le αf(x_1)+(1-α)f(x_2)
f(αx1+(1−α)x2)≤αf(x1)+(1−α)f(x2)
Let
α
=
b
−
x
b
−
a
,
∀
x
∈
[
a
,
b
]
α=\frac{b-x}{b-a}, \forall x∈[a,b]
α=b−ab−x,∀x∈[a,b], then
α
x
1
+
(
1
−
α
)
x
2
=
x
αx_1+(1-α)x_2=x
αx1+(1−α)x2=x, so we have:
e
t
x
≤
b
−
x
b
−
a
e
t
a
+
x
−
a
b
−
a
e
t
b
,
∀
x
∈
[
a
,
b
]
e^{tx} \leq \frac{b-x}{b-a} e^{ta}+\frac{x-a}{b-a} e^{tb}, \forall x \in[a, b]
etx≤b−ab−xeta+b−ax−aetb,∀x∈[a,b]
take expectations on both sides, and because of
E
(
x
)
=
0
E(x)=0
E(x)=0, there is:
E
(
e
t
x
)
≤
b
b
−
a
e
t
a
−
a
b
−
a
e
t
b
E(e^{tx}) \leq \frac{b}{b-a} e^{ta}-\frac{a}{b-a} e^{tb}
E(etx)≤b−abeta−b−aaetb
Try to simplify it.
Let
p
=
−
a
b
−
a
p=-\frac{a}{b-a}
p=−b−aa, then
r
i
g
h
t
=
(
1
−
p
)
e
−
t
(
b
−
a
)
p
+
p
e
−
t
(
b
−
a
)
(
p
−
1
)
right=(1-p)e^{-t(b-a)p}+pe^{-t(b-a)(p-1)}
right=(1−p)e−t(b−a)p+pe−t(b−a)(p−1),
let
h
=
t
(
b
−
a
)
h=t(b-a)
h=t(b−a), then
r
i
g
h
t
=
(
1
−
p
)
e
−
h
p
+
p
e
h
(
1
−
p
)
=
e
−
h
p
(
1
−
p
+
p
e
h
)
right=(1-p)e^{-hp}+pe^{h(1-p)}=e^{-hp}(1-p+pe^h)
right=(1−p)e−hp+peh(1−p)=e−hp(1−p+peh), note the function
L
(
h
)
=
−
h
p
+
l
n
(
1
−
p
+
p
e
h
)
,
h
>
0
L(h)=-hp+ln(1-p+pe^h),h>0
L(h)=−hp+ln(1−p+peh),h>0, now we need to prove
L
(
h
)
≤
t
2
(
b
−
a
)
2
8
=
h
2
8
L(h) \le \frac{t^{2}(b-a)^{2}}{8}=\frac{h^{2}}{8}
L(h)≤8t2(b−a)2=8h2.
Give two ways to evident this inequality above:
-
Construct function, g ( h ) = L ( h ) − h 2 8 = − h p + l n ( 1 − p + p e h ) − h 2 8 , h > 0 g(h)=L(h)-\frac{h^{2}}{8}=-hp+ln(1-p+pe^h)-\frac{h^{2}}{8},h>0 g(h)=L(h)−8h2=−hp+ln(1−p+peh)−8h2,h>0
Obviously, g ( 0 ) = 0 , g ′ ( 0 ) = 0 , g ′ ′ ( h ) = ( 1 − p ) p e h [ ( 1 − p ) + ( p e h ) ] 2 − 1 4 ≤ 0 g(0)=0, g'(0)=0,g''(h)=\frac{(1-p) p e^{h}}{[(1-p)+(p e^{h})]^2}-\frac{1}{4} \le0 g(0)=0,g′(0)=0,g′′(h)=[(1−p)+(peh)]2(1−p)peh−41≤0, according to the monotonicity, g ( h ) ≤ 0 g(h)\le0 g(h)≤0, namely L ( h ) ≤ h 2 8 = t 2 ( b − a ) 2 8 L(h) \le \frac{h^{2}}{8}=\frac{t^{2}(b-a)^{2}}{8} L(h)≤8h2=8t2(b−a)2. -
Apply taylor expansion to function g ( h ) g(h) g(h), g ( h ) = 0 + 0 + g ′ ′ ( 0 ) 2 ! ( h − 0 ) 2 + o ( h 2 ) = 1 2 ( ( 1 − p ) p [ ( 1 − p ) + ( p ) ] 2 − 1 4 ) h 2 + o ( h 2 ) ≤ 0 g(h)=0+0+\frac{g''(0)}{2!}(h-0)^2+o(h^2)=\frac{1}{2}(\frac{(1-p) p }{[(1-p)+(p )]^2}-\frac{1}{4})h^2 +o(h^2)\le0 g(h)=0+0+2!g′′(0)(h−0)2+o(h2)=21([(1−p)+(p)]2(1−p)p−41)h2+o(h2)≤0, namely L ( h ) ≤ h 2 8 = t 2 ( b − a ) 2 8 L(h) \le \frac{h^{2}}{8}=\frac{t^{2}(b-a)^{2}}{8} L(h)≤8h2=8t2(b−a)2.
So the hoeffding’s lemma is true.
To be continued……
reference:
https://www.cnblogs.com/kolmogorov/p/9518867.html
http://dict.cnki.net/
李航《统计学习方法》 北京:清华大学出版社,2019