The Proof of Hoeffding's Inequality

Hoeffding’s Inequality:

Suppose x 1 , x 2 , … … x N x_1,x_2,……x_N x1,x2,xN are independent random variables, and x i ∈ [ a i , b i ] x_i∈[a_i, b_i] xi[ai,bi], i = 1 , 2 , … … , N i=1,2,……,N i=1,2,,N; X ˉ \bar{X} Xˉ is the expirical mean of x 1 , x 2 , … … x N x_1,x_2,……x_N x1,x2,xN, namely, X ˉ = 1 N ∑ i = 1 N x i \bar{X}=\frac{1}{N}\sum_{i=1}^{N}{x_i} Xˉ=N1i=1Nxi, then for any t > 0 t>0 t>0, the following inequality holds:
P [ X ˉ − E ( X ˉ ) ≥ t ] ≤ e x p ( − 2 N 2 t 2 ∑ i = 1 N ( b i − a i ) 2 ) P[ \bar{X}-E(\bar{X})\geq t ]\leq exp\left(-\frac{2N^2t^2}{\sum_{i=1}^{N}{(b_i-a_i)^2}} \right) P[XˉE(Xˉ)t]exp(i=1N(biai)22N2t2)
P [ E ( X ˉ ) − X ˉ ≥ t ] ≤ e x p ( − 2 N 2 t 2 ∑ i = 1 N ( b i − a i ) 2 ) P[E(\bar{X})- \bar{X}\geq t ]\leq exp\left(-\frac{2N^2t^2}{\sum_{i=1}^{N}{(b_i-a_i)^2}} \right) P[E(Xˉ)Xˉt]exp(i=1N(biai)22N2t2)

Hoeffding’s lemma:

Suppose x x x is an random variable, x ∈ [ a , b ] x∈[a, b] x[a,b], and E ( x ) = 0 E(x)=0 E(x)=0, then for any t > 0 t>0 t>0,the following inequality holds:
E ( e t x ) ≤ e x p t 2 ( b − a ) 2 8 E(e^{tx})\leq exp\frac{t^2(b-a)^2}{8} E(etx)exp8t2(ba)2

We prove the lemma first:

Obviously, f ( x ) = e t x f(x)=e^{tx} f(x)=etx is a convex function, so for any α ∈ [ 0 , 1 ] α∈[0,1] α[0,1], we have:
f ( α x 1 + ( 1 − α ) x 2 ) ≤ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f(αx_1+(1-α)x_2)\le αf(x_1)+(1-α)f(x_2) f(αx1+(1α)x2)αf(x1)+(1α)f(x2)
在这里插入图片描述
Let α = b − x b − a , ∀ x ∈ [ a , b ] α=\frac{b-x}{b-a}, \forall x∈[a,b] α=babx,x[a,b], then α x 1 + ( 1 − α ) x 2 = x αx_1+(1-α)x_2=x αx1+(1α)x2=x, so we have:
e t x ≤ b − x b − a e t a + x − a b − a e t b , ∀ x ∈ [ a , b ] e^{tx} \leq \frac{b-x}{b-a} e^{ta}+\frac{x-a}{b-a} e^{tb}, \forall x \in[a, b] etxbabxeta+baxaetb,x[a,b]
take expectations on both sides, and because of E ( x ) = 0 E(x)=0 E(x)=0, there is:
E ( e t x ) ≤ b b − a e t a − a b − a e t b E(e^{tx}) \leq \frac{b}{b-a} e^{ta}-\frac{a}{b-a} e^{tb} E(etx)babetabaaetb
Try to simplify it.
Let p = − a b − a p=-\frac{a}{b-a} p=baa, then r i g h t = ( 1 − p ) e − t ( b − a ) p + p e − t ( b − a ) ( p − 1 ) right=(1-p)e^{-t(b-a)p}+pe^{-t(b-a)(p-1)} right=(1p)et(ba)p+pet(ba)(p1),
let h = t ( b − a ) h=t(b-a) h=t(ba), then r i g h t = ( 1 − p ) e − h p + p e h ( 1 − p ) = e − h p ( 1 − p + p e h ) right=(1-p)e^{-hp}+pe^{h(1-p)}=e^{-hp}(1-p+pe^h) right=(1p)ehp+peh(1p)=ehp(1p+peh), note the function L ( h ) = − h p + l n ( 1 − p + p e h ) , h > 0 L(h)=-hp+ln(1-p+pe^h),h>0 L(h)=hp+ln(1p+peh),h>0, now we need to prove L ( h ) ≤ t 2 ( b − a ) 2 8 = h 2 8 L(h) \le \frac{t^{2}(b-a)^{2}}{8}=\frac{h^{2}}{8} L(h)8t2(ba)2=8h2.

Give two ways to evident this inequality above:

  1. Construct function, g ( h ) = L ( h ) − h 2 8 = − h p + l n ( 1 − p + p e h ) − h 2 8 , h > 0 g(h)=L(h)-\frac{h^{2}}{8}=-hp+ln(1-p+pe^h)-\frac{h^{2}}{8},h>0 g(h)=L(h)8h2=hp+ln(1p+peh)8h2,h>0
    Obviously, g ( 0 ) = 0 , g ′ ( 0 ) = 0 , g ′ ′ ( h ) = ( 1 − p ) p e h [ ( 1 − p ) + ( p e h ) ] 2 − 1 4 ≤ 0 g(0)=0, g'(0)=0,g''(h)=\frac{(1-p) p e^{h}}{[(1-p)+(p e^{h})]^2}-\frac{1}{4} \le0 g(0)=0,g(0)=0,g(h)=[(1p)+(peh)]2(1p)peh410, according to the monotonicity, g ( h ) ≤ 0 g(h)\le0 g(h)0, namely L ( h ) ≤ h 2 8 = t 2 ( b − a ) 2 8 L(h) \le \frac{h^{2}}{8}=\frac{t^{2}(b-a)^{2}}{8} L(h)8h2=8t2(ba)2.

  2. Apply taylor expansion to function g ( h ) g(h) g(h), g ( h ) = 0 + 0 + g ′ ′ ( 0 ) 2 ! ( h − 0 ) 2 + o ( h 2 ) = 1 2 ( ( 1 − p ) p [ ( 1 − p ) + ( p ) ] 2 − 1 4 ) h 2 + o ( h 2 ) ≤ 0 g(h)=0+0+\frac{g''(0)}{2!}(h-0)^2+o(h^2)=\frac{1}{2}(\frac{(1-p) p }{[(1-p)+(p )]^2}-\frac{1}{4})h^2 +o(h^2)\le0 g(h)=0+0+2!g(0)(h0)2+o(h2)=21([(1p)+(p)]2(1p)p41)h2+o(h2)0, namely L ( h ) ≤ h 2 8 = t 2 ( b − a ) 2 8 L(h) \le \frac{h^{2}}{8}=\frac{t^{2}(b-a)^{2}}{8} L(h)8h2=8t2(ba)2.

So the hoeffding’s lemma is true.

To be continued……
reference:

https://www.cnblogs.com/kolmogorov/p/9518867.html
http://dict.cnki.net/
李航《统计学习方法》 北京:清华大学出版社,2019

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值