【已解决】xgboost多标签分类预测,运行xgb.train时,报错SoftmaxMultiClassObj: label must be in [0, num_class)

本文记录了在使用XGBoost进行多标签分类预测时遇到的错误:`SoftmaxMultiClassObj: label must be in [0, num_class)`。通过分析报错信息,发现标签值需从1~6改为0~5。调整后,模型训练恢复正常。解决方案是将所有分类转换为0~N的取值,例如使用one-hot编码。分享这一经验,以帮助遇到类似问题的开发者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

业务场景为多标签分类预测,传闻xgboost拿下了kaggle赛场大部分非xx数据的冠军,于是初试牛刀xgboost。
xgboost模型训练报错,百度翻了一圈没找到对应的解决方案,最终通过猜测可能的堵点以及逐个尝试破解,试出了解决方案。
本着开荒分享促进交流的原则,谨写此帖。

报错背景及内容

报错提示行是“xgb.train(plst, dtrain, num_rounds)”:

# xgboost模型训练
model = xgb.train(plst, dtrain, num_rounds)

报错关键提示,
简单版:

SoftmaxMultiClassObj: label must be in [0, num_class)

复杂版:

“xgboost.core.XGBoostError: [14:54:48] /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/objective/multiclass_obj.cu:120: SoftmaxMultiClassObj: label must be in [0, num_class).”

报错提示详情如下2图:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值