### 反应模型(Reaction Models)

本文详细介绍了VisualMODFLOWFlex支持的两种反应类型——第一阶和零阶不可逆衰减,以及它们在溶质传输中的应用。还涵盖了色散的概念,包括机械色散和扩散,以及MT3DMS等模型中色散系数的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Visual MODFLOW Flex supports a variety of reaction for solute transport:
First-Order Irreversible Decay
In first order irreversible decay, the rate of change of solute concentration is proportional to the concentration at a given time.  The mass balance term for first order decay as a function of time, (assuming no other processes), is given by:

[ \frac{\partial (\phi_e c_{t(i)})}{\partial t} = -\lambda_1(i)\phi_e c_{t(i)} ]

where: 

  • (C_t(i)): Concentration of species (i) at time (t) ([M/L^3])
  • (C_0(i)): Initial concentration of species (i) ([M/L^3])
  • (\phi_e): Effective porosity of the soil ([L3/L3] \rightarrow [-])
  • (\lambda_1(i)): First-order decay rate of species (i) ([1/T])
  • (t): Elapsed time ([T])

Assuming the effective porosity does not change over time,  can be dropped from both sides of the equation and the general solution for the concentration as a function of time is given by: 

[C_{t(i)} = C_{0}(i)e^{-\lambda_{1(i)}t}]


First-order decay rate coefficients can be derived from half-life values, which are more commonly available. The half-life is the time for the constituent concentration to reach half of its initial concentration (i.e. C_{t(i)}=0.5 \times C_{0(i)}). The first order decay rate is related to the half-life as follows:

[ \lambda_{1(i)} = \frac{\ln(2)}{t_{1/2 (i)}} ]

where: 

  • ( \lambda_1(i) ) represents the first-order decay rate of species ( i ) [1/T].
  • ( t_{1/2}(i) ) denotes the half-life of species ( i ) [T].

The first order decay may be applied to the constituent in supported phases (dissolved or sorbed) and/or domains (mobile or immobile), as supported by the various transport engines. Please refer to the descriptions of Modeling Objectives and Species Parameters for details. 
When first order decay (or complex Model Reactions) is included in a Transport Simulation, Visual MODFLOW Flex may require one or more of the parameters following may be required:

·    K_mobile is the first-order decay rate coefficient for dissolved constituents in both the mobile (and immobile domain, if applicable) [1/T]
·    K_sorbed is the first-order decay rate coefficient for sorbed constituents in both the mobile (and immobile domain, if applicable) [1/T]
·    K1 is the first-order decay rate coefficient for dissolved constituents in the mobile domain [1/T]
·    K1_sorbed is the first-order decay rate coefficient for sorbed constituents in the mobile domain [1/T]
·    K1_im1 is the first-order decay rate coefficient for dissolved consitituents in the first immobile domain [1/T]
·    K1_im1_sorbed is the first-order decay rate coefficient for sorbed consitituents in the first immobile domain [1/T]
·    K1_im2 is the first-order decay rate coefficient for dissolved consitituents in the second immobile domain [1/T]

·    K1_im2_sorbed is the first-order decay rate coefficient for sorbed consitituents in the second immobile domain [1/T]
·    K1_im3 is the first-order decay rate coefficient for dissolved consitituents in the third immobile domain [1/T]
·    K1_im3_sorbed is the first-order decay rate coefficient for sorbed consitituents in the third immobile domain [1/T]

Zeroth-Order Irreversible Decay
In zeroth order irreversible decay, the rate of change of solute concentration is constant. Zeroth order decay is most commonly used in situations where bio-geochemical decay (or production) does not depend on solute concentration or when simulating groundwater age, where the groundwater age where the is mathematically analogous to a solute (Goode, 1996).  The mass balance term for zeroth order decay as a function of time, (assuming no other processes), is given by:

[ \frac{\delta (\phi_e C_{t(i)})}{\partial t} = \pm \lambda _{0(i)} \phi_e ]

  • (c_i(t)): Concentration of species (i) at time (t) ([M/L^3])
  • (\phi_e): Effective porosity of the soil ([L3/L3] \rightarrow [-])
  • (\lambda^{(0)}_i): Zeroth order decay rate of species (i) ([1/T])
  • (t): Elapsed time ([T])

A negative value indicates a loss in mass concentration, which is commonly used models of bio-geochemical decay.  A positive value of the zeroth order decay rate indicates a gain in mass concentration, which may be used for simulating a daughter product in some bio-geochemical reactions or for simulating groundwater age as the groundwater ages at a constant rate, (unless the some of the groundwater is accelerated to relativistic speeds, which is generally improbable and also apt to cause significant problems). Assuming the effective porosity does not change over time \phi_e,  can be dropped from both sides of the equation and the general solution for the concentration as a function of time is given by: 

[C_{t(i)} = C_{0(i) }+ -\lambda_{0(i)}t]


When zeroth order decay (or complex Model Reactions) is included in a Transport Simulation, Visual MODFLOW Flex may require one or more of the parameters following may be required:

·    K_mobile is the zeroth-order decay rate coefficient for dissolved constituents in both the mobile (and immobile domain, if applicable) [1/T]
·    K_sorbed is the zeroth-order decay rate coefficient for sorbed constituents in both the mobile (and immobile domain, if applicable) [1/T]

·    K0 is the zeroth-order decay rate coefficient for dissolved constituents in the mobile domain [1/T]
·    K0_sorbed is the zeroth-order decay rate coefficient for sorbed constituents in the mobile domain [1/T]
·    K0_im1 is the zeroth-order decay rate coefficient for dissolved consitituents in the first immobile domain [1/T]
·    K0_im1_sorbed is the zeroth-order decay rate coefficient for sorbed consitituents in the first immobile domain [1/T]
·    K0_im2 is the zeroth-order decay rate coefficient for dissolved consitituents in the second immobile domain [1/T]
·    K0_im2_sorbed is the zeroth-order decay rate coefficient for sorbed consitituents in the second immobile domain [1/T]
·    K0_im3 is the zeroth-order decay rate coefficient for dissolved consitituents in the third immobile domain [1/T]
·    K0_im3_sorbed is the zeroth-order decay rate coefficient for sorbed consitituents in the third immobile domain [M/L]

RT3D Reaction Modules
RTD3 is an advanced transport engine that includes support for coupled reactions for several well known reaction types:

·    Instantaneous aerobic degradation of of BTEX;
·    Six-Species, First-Order, Rate-Limited, BTEX Degradation using Sequential Electron Acceptors;
·    Rate-Limited Sorption;
·    Double-Monod Model;
·    Sequential First-Order Decay; or
·    Aerobic/Anaerobic PCE/TCE Dechlorination

A description of these reactions is beyond the scope of the Visual MODFLOW Flex documentation as RT3D ; however, the reactions are well descbribed in the RT3D documentation by Clement (1997 and 2003).
Dispersion
Dispersion is a physical process that tends to ‘disperse’, or spread, the solute mass in the X, Y and Z directions along the advective path of the plume, and acts to reduce the solute concentration (but not overall mass). Dispersion combines two physical processes,mechanical dispersion ( D^{mech}) which is due to the tortuosity of the flowpaths of the groundwater as the macro-scale as the solute travels through the interconnected pores of the soil and by diffusion ( ) which is caused by random Fickian motion that tends to spread solute mass away from areas of higher concentration. Dispersion is calculated using the equation:

[ D = D^{mech} + D^* = \alpha_L \times \frac{v_L^2}{|v|} + \alpha_H \times \frac{v_H^2}{|v|} + \alpha_v \times \frac{v_v^2}{|v|} + D^* ]

  1. 公式

    • (D) 是弥散系数(单位:[L^2/T])
    • (D^{mech}) 是机械弥散系数(单位:[L^2/T])
    • (D^*) 是扩散系数(单位:[L^2/T])
    • (\alpha_L) 是纵向弥散度(单位:[L])
    • (v_L) 是沿污染物迁移路径的纵向流速(单位:[L/T])
    • (\alpha_H) 是水平弥散度
    • (v_H) 是沿污染物迁移路径的水平流速
    • (\alpha_v) 是垂直弥散度
    • (v_v) 是沿污染物迁移路径的垂直流速
    • (|v|) 表示地下水流速的大小

MT3DMS, RT3D, SEAWAT, and SURFACT
MT3DMS、RT3D、SEAWAT 和 SURFACT 使用以下参数计算质量传递模型的色散系数:

Longitudinal Dispersivity ( ) for each transport grid cell 

·    Ratio of Horizontal to Longitudinal Dispersivity () for each layer
·    Ratio of Vertical to Longitudinal Dispersivity ( ) for each layer
·    Molecular Diffusion Coefficient for each layer

可以使用为大多数参数提供的常规工具集(即逐个单元、按层/行/列或使用折线/多边形/数据对象)来定义纵向色散。 还可以通过右键单击模型树中的纵向色散对象并选择色散参数选项来逐层定义纵向色散。

以上文本提供了关于反应模型、色散以及与之相关的方程和参数的详细说明。我会逐步解释其中的内容。

### 反应模型(Reaction Models)

#### 第一阶不可逆衰减(First-Order Irreversible Decay)

在第一阶不可逆衰减中,溶质浓度的变化率与给定时间的浓度成比例。其时间的质量平衡项(假设没有其他过程)如下所示:

\[ \frac{\partial (\phi_e c_{t(i)})}{\partial t} = -\lambda_1(i)\phi_e c_{t(i)} \]

其中:

- \( C_{t(i)} \):时间 \( t \) 处物种 \( i \) 的浓度(\[ M/L^3 \])
- \( C_0(i) \):物种 \( i \) 的初始浓度(\[ M/L^3 \])
- \( \phi_e \):土壤的有效孔隙度(\[ L^3/L^3 \rightarrow [-] \)
- \( \lambda_1(i) \):物种 \( i \) 的一阶衰减速率(\[ 1/T \])
- \( t \):经过的时间(\[ T \])

假设有效孔隙度在时间上不变,可以从方程的两侧去掉 \( \phi_e \),并得到浓度作为时间函数的一般解:

\[ C_{t(i)} = C_0(i) e^{-\lambda_{1(i)} t} \]

#### 零阶不可逆衰减(Zeroth-Order Irreversible Decay)

在零阶不可逆衰减中,溶质浓度的变化率是恒定的。零阶衰减在生物地球化学衰减(或产生)不依赖于溶质浓度的情况下最常用,或在模拟地下水时使用,其中地下水年龄在数学上类似于溶质。其时间的质量平衡项如下所示:

\[ \frac{\delta (\phi_e C_{t(i)})}{\partial t} = \pm \lambda _{0(i)} \phi_e \]

其中:

- \( C_{t(i)} \):时间 \( t \) 处物种 \( i \) 的浓度(\[ M/L^3 \])
- \( \phi_e \):土壤的有效孔隙度(\[ L^3/L^3 \rightarrow [-] \)
- \( \lambda^{(0)}_i \):物种 \( i \) 的零阶衰减速率(\[ 1/T \])
- \( t \):经过的时间(\[ T \])

假设有效孔隙度在时间上不变,可以从方程的两侧去掉 \( \phi_e \),并得到浓度作为时间函数的一般解:

\[ C_{t(i)} = C_{0(i) }+ -\lambda_{0(i)}t \]

#### RT3D 反应模块

RT3D 是一个高级传输引擎,支持多种已知的反应类型,例如瞬时好氧降解、六种物质的一阶速率限制的 BTEX 降解、速率限制吸附、双 Monod 模型、顺序一阶衰减和好氧/厌氧 PCE/TCE 脱氯等。

### 色散(Dispersion)

色散是一种物理过程,倾向于在污染物云的流动路径上在 X、Y 和 Z 方向上“分散”或扩散溶质质量,并有助于降低溶质浓度(但不影响总质量)。色散结合了机械色散(\( D^{mech} \))和扩散(\( D^* \))这两个物理过程,机械色散是由于地下水流通过土壤的连通孔隙而导致的,扩散则是由于分子的随机 Fickian 运动导致的,其倾向于将溶质质量从浓度较高的区域扩散到较低的区域。色散可使用以下方程计算:

\[ D = D^{mech} + D^* = \alpha_L \times \frac{v_L^2}{|v|} + \alpha_H \times \frac{v_H^2}{|v|} + \alpha_v \times \frac{v_v^2}{|v|} + D^* \]

其中:

- \( D \):色散系数(\[ L^2/T \])
- \( D^{mech} \):机械色散系数(\[ L^2/T \])
- \( D^* \):扩散系数(\[ L^2/T \])
- \( \alpha_L \):纵向色散度(\[ L \])
- \( v_L \):沿污染物迁移路径的纵向流速(\[ L/T \])
- \( \alpha_H \):水平色散度
- \( v_H \):沿污染物迁移路径的水平流速
- \( \alpha_v \):垂直色散度
- \( v_v \):沿污染物迁移路径的垂直流速
- \( |v| \):地下水流速的大小

### MT3DMS、RT3D、SEAWAT 和 SURFACT 中的色散参数

这些模型使用纵向色散度和每个层的水平到纵向色散度比率以及垂直到纵向色散度比率来计算质量传递模型的色散系数。此外,还需要每个层的分子扩散系数。

好的,让我们通过一个简单的例子来说明第一阶不可逆衰减和色散的概念。

假设我们正在研究一个地下水中某种污染物的传输过程。我们知道该污染物在地下水中会发生第一阶不可逆衰减,其衰减速率为 \( \lambda_1 = 0.005 \) 每年。我们还知道地下水中存在着一定的色散,其中纵向色散系数为 \( \alpha_L = 0.1 \) 米,水平色散系数为 \( \alpha_H = 0.05 \) 米,垂直色散系数为 \( \alpha_v = 0.01 \) 米。此外,我们假设地下水流速度为 \( v = 0.2 \) 米每年。

现在,让我们通过解释方程来计算地下水中污染物浓度随时间的变化。

### 第一阶不可逆衰减

根据第一阶不可逆衰减的方程:

\[ \frac{\partial (\phi_e c_{t(i)})}{\partial t} = -\lambda_1(i)\phi_e c_{t(i)} \]

我们可以得到浓度随时间变化的微分方程:

\[ \frac{dc_{t(i)}}{dt} = -\lambda_1 c_{t(i)} \]

解这个微分方程,我们可以得到浓度随时间的一般解:

\[ c_{t(i)} = c_{0(i)} e^{-\lambda_1 t} \]

其中 \( c_{0(i)} \) 是初始浓度。

在我们的例子中,假设初始浓度 \( c_{0(i)} = 10 \) 毫克/立方米(\[ mg/L \]),则浓度随时间的变化可以用下面的公式表示:

\[ c_{t(i)} = 10 \times e^{-0.005t} \]

### 色散

根据色散的方程:

\[ D = D^{mech} + D^* = \alpha_L \times \frac{v_L^2}{|v|} + \alpha_H \times \frac{v_H^2}{|v|} + \alpha_v \times \frac{v_v^2}{|v|} + D^* \]

我们可以计算出总的色散系数 \( D \)。

在我们的例子中,假设地下水流速度为 \( v = 0.2 \) 米/年,纵向流速 \( v_L = 0.15 \) 米/年,水平流速 \( v_H = 0.1 \) 米/年,垂直流速 \( v_v = 0.05 \) 米/年,扩散系数 \( D^* = 0.02 \) 平方米/年。

\[ D = 0.1 \times \frac{0.15^2}{0.2} + 0.05 \times \frac{0.1^2}{0.2} + 0.01 \times \frac{0.05^2}{0.2} + 0.02 \]

\[ D = 0.0375 + 0.0125 + 0.00125 + 0.02 \]

\[ D = 0.07125 \]

### 结论

通过解第一阶不可逆衰减的方程和计算色散系数,我们可以了解地下水中污染物浓度随时间的变化以及色散对其传输过程的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值