水动力弥散系数是表征在一定流速下,多孔介质对某种污染物质弥散能力的参数。在建立水动力弥散方程的过程中,将有关物理量在典型单元体上进行平均,这样就回避了水动力弥散系数的微观情况,不利于深刻理解弥散系数的结构及其影响因素。在实际的多孔介质中影响水动力弥散系数的因素很多,且相互之间的关系也非常复杂,通常采取理想模型的研究方法,即将实际的多孔介质用一个假想的、简化的模型来代替,从而将在该模型中发生的弥散现象用精确的数学方法来分析。这样才能对弥散系数的主要影响因素逐项进行讨论,然后将其结果类推到实际的多孔介质中。本章还对实际地质介质中弥散系数的尺度效应进行了分析与讨论。
3.1 理论模型研究
第2章建立水动力弥散方程的方法,是在典型单元体上一次求平均后得到的。此方法建立的微分方程比较简单,但是不能给出其中的水动力弥散系数,特别是机械弥散系数的结构。机械弥散系数取决于哪些因素,要从理想模型的研究中得出。
关于弥散系数结构的探讨,最早始于1953年,自此之后,在许多专业期刊上出现了大量的文章。这些文章从不同的角度、在不同的程度上讨论了弥散系数与孔隙骨架、水流参数及分子扩散系数之间的关系。本节只对具有代表性的模型的基本思路及主要结论进行简要的介绍与分析。
Taylor(1953)提出了一个最简单的圆柱状毛管模型,圆管中C=0的溶液被C=Co的液体所驱替(图3.1)。根据水力学知识,流速呈抛物线形分布,并由此产生分子扩散。于是示踪剂的迁移受对流和分子扩散的支配。对此,Taylor导出了如下圆柱状毛管的弥散系数表达式,即
式中:r为毛管半径;D…为分子扩散系数:“为平均流速。Taylor 圆柱状毛管模型中D与”成正比,这是最初的也是最简单的模型。后来大量的实验表明,这种弥散系数的结构失真,其原因是考虑的因素过于简单,失去了多孔介质中弥散现象的基本特征。
后来,Bear和Bachmat(1967)将多孔介质化为相互连通的空间毛管网络,毛管的长度、方位和断面的大小都是随机变化的,毛管的接头处至少有3根毛管互连,且假定模型中的水流属于层流运动。
他们采用两次平均的方法:第一步先在毛管横截面上求平均,并将所得的平均值放在毛管横截面的轴心上:第二步是沿毛管轴在单元体上进行平均,并将其作为典型单元体的平均值。依此所求出的结果是
3.2实验研究
在20世纪50年代中后期,许多研究者在实验室做了大量的一维水动力弥散实验,来研
究D与各个因素之间的关系。在实验室确定纵向水动力弥散系数D,一般采用一维弥散实验。通常在充满均质砂的砂柱中预先用不含示踪剂的流体饱和,并将其控制在某个流速水平上。在砂柱的一端引入定浓度的示踪剂,以驱替原有的不含示踪剂的液体,并在另一端测量出流体的示踪剂浓度,或在中间插入若干个浓度传感器测出流体的示踪剂浓度(如对于NaCl示踪剂常用电极测其电阻
率),便可通过一定的公式计算出 DL。因次分析可以证明:在一般情况下,水动力弥散系数D(=D'+D")是关于分子扩散的佩克莱数 Pe的函数。Pe是无因次参数,是有因次参数。为了将它们转化成无因次参数与无因次参数间的关系,故将纵坐标取为D/D或D/D,坐标取为Pe。这是因为,无因次参数间的关系可以使实验工作量大大地减少,同时其使用范围比有因次坐标更加广泛。Perkins和Johnson(1963)将多组实验结果绘在双对数坐标系上(图3.2),横坐标取为Pe,纵坐标分别取D/D和D/D。通过分析,提出了经验公式,即
3.3 水动力弥散的尺度效应