人工智能咨询培训老师叶梓 转载标明出处
尽管语言模型(LMs)在科学问题解决技能方面取得了显著进步,但现有模型开发主要集中在标准化测试和数据集上,并未充分考虑现实教育场景中的需求。特别是在处理长篇科学文档和模拟真实教学互动方面,现有技术仍存在局限。来自普林斯顿大学的研究团队及其合作者介绍了TUTOREVAL和TUTORCHAT,旨在衡量LMs作为科学助手的实际应用性,并探讨了它们在教育领域的潜力。

TUTOREVAL,这是一个长期语境问答基准测试,它需要高级科学知识,模拟人类寻求理解教科书材料的过程。TUTOREVAL由800多个专家撰写的问题组成,涵盖数学、物理、计算机科学、环境科学和生命科学等领域。由于通过使用现有对话数据集对基础模型进行微调,在TUTOREVAL上的表现并不理想,研究者创建了TUTORCHAT,这是第一个关于科学的长期对话数据集,包含80,000个关于教科书的长篇合成对话。