革命性的进步:语言模型成为科学助理

人工智能咨询培训老师叶梓 转载标明出处

尽管语言模型(LMs)在科学问题解决技能方面取得了显著进步,但现有模型开发主要集中在标准化测试和数据集上,并未充分考虑现实教育场景中的需求。特别是在处理长篇科学文档和模拟真实教学互动方面,现有技术仍存在局限。来自普林斯顿大学的研究团队及其合作者介绍了TUTOREVAL和TUTORCHAT,旨在衡量LMs作为科学助手的实际应用性,并探讨了它们在教育领域的潜力。

TUTOREVAL的示例。在这个例子中,学生向语言模型导师(LM Tutor)提问,并且章节内容和问题一起输入给LM Tutor以生成答案。GPT-4通过参考人类标注的关键点来评估生成的结果

TUTOREVAL,这是一个长期语境问答基准测试,它需要高级科学知识,模拟人类寻求理解教科书材料的过程。TUTOREVAL由800多个专家撰写的问题组成,涵盖数学、物理、计算机科学、环境科学和生命科学等领域。由于通过使用现有对话数据集对基础模型进行微调,在TUTOREVAL上的表现并不理想,研究者创建了TUTORCHAT,这是第一个关于科学的长期对话数据集,包含80,000个关于教科书的长篇合成对话。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值