YOLOv5改进系列(二十二) 更换骨干网络之GhostNetV2


论文解读


文章目录

  • 网络表现
  • 模型结构
  • YOLO算法添加方式
    • 第一步
    • 第二步
    • 第三步
    • `yolov5-GhostNetv2.yaml`

在这里插入图片描述

轻量级卷积神经网络(CNN)是专门为在移动设备上具有更快推理速度的应用而设计的。卷积操作只能捕捉窗口区域内的局部信息,这防止了性能的进一步提高。将自注意力引入卷积可以很好地捕捉全局信息,但这将大大拖累实际速度。本文提出了一种硬件友好的注意力机制(称为DFC注意力),并提出了一种适用于移动应用的新GhostNetV2架构。所提出的DFC注意力是基于全连接层构建的,不仅可以在通用硬件上快速执行,而且还可以捕捉长距离像素之间的依赖关系。我们进一步重新审视了先前GhostNet中的表现瓶颈,并建议使用DFC注意力增强由廉价操作产生的扩展特征,以便GhostNetV2块可以同时聚合局部和长距离信息。广泛的实验表明GhostNetV2优于现有架构。例如,它在ImageNet上实现了75.3%的Top-1准确率,FLOPs为167M,显着抑制了具有类似计算成本的GhostNetV1(74.5%)。

论文地址:http

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值