点击进入专栏:
《人工智能专栏》 Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程
文章目录
-
- 引言
- 基本性质
- 二分类交叉熵
- Softmax 多分类交叉熵
- 另一版推导(包含向量表示形式)
引言
交叉熵,顾名思义,取的是两者交叉的熵值;而在机器学习中的所谓两者,自然是真实分布(或实际输出概率)与预测分布(或期望输出概率),通过熵值计算的方法来刻画两者距离,可以评估两个概率分布(或特征工程里的两个特征变量)的相似度。当交叉熵的值越小时,两个概率分布也就越接近,实际与期望的差距也就越小。
作为一类重要的损失函数,交叉熵较常用于分类问题,特别是神经网络的分类问题。与平方损失函数相比较,由于学习速率可以被输出误差所控制的缘故,交叉熵能在梯度下降时避免均方误差损失函数学习速率降低的问题,有着更为出色的效果。除此之外,由于交叉熵的计算涉及到各个类别的概率,所以说起交叉熵几乎与sigmoid/softmax函数形影不离,