最优控制:代数黎卡提方程ARE(Algebraic Riccati Equation)

本文介绍了在Matlab中使用care函数进行代数黎卡提方程(ARE)的直接求解,并通过迭代法设计LQR控制器。文中提供了具体的Matlab代码示例,展示了如何初始化和优化控制增益矩阵K。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍代数黎卡提方程的Matlab解法,包括直接求解和迭代求解

问题描述:

一、数值解法

可以看出,ARE方程是关于P的一个非线性方程,当系统矩阵维度较高时,难以求解,但是MATLAB给出了求解ARE的函数care

% 系统矩阵
A = [-1 0; 0 -2]
% 控制输入矩阵
B = [1; 1];
% 状态权重矩阵
Q = eye(2);
% 控制输入权重矩阵
R = 1;

% 求解代数黎卡提方程
[P,~,~] = care(A, B, Q, R);

% LQR控制器设计
K = inv(R) * B' * P;

% 打印结果
disp('最优控制器增益矩阵 K:');
disp(K);

二、迭代求法

理论基础:

参考链接:

On an iterative technique for Riccati equation computations | IEEE Journals & Magazine | IEEE Xplore

 具体过程:

 

 附上代码:

clear all;
% 系统矩阵
A = [-1 0; 0 -2];
% 控制输入矩阵
B = [1; 1];
% 状态权重矩阵
Q = eye(2);
% 控制输入权重矩阵
R = 1;

% 迭代法求解代数黎卡提方程和控制策略
maxIterations = 100; % 最大迭代次数
tolerance = 1e-6; % 收敛容差
P = zeros(size(A)); % 初始化 P 矩阵
K = [0,0]; % 初始化控制增益矩阵K

for i = 1:maxIterations
    
    % 求解代数黎卡提方程
    X0 = P; % 初始猜测值
    options = optimoptions('fsolve', 'Display', 'off'); % 设置 fsolve 的选项
    P_new = fsolve(@(X) (A-B*K)'*X + X*(A-B*K) + Q + K'*R*K, X0, options);
    K_new = inv(R) * B' * P_new ;
    
    if norm(P_new - P, 'fro') < tolerance
        P = P_new;
        K = K_new;
        break;
    end
    
    P = P_new;
    K = K_new;
end

% 打印结果
disp('最优控制增益矩阵 K:');
disp(K);

推导方式:来源Chat-GPT3.5

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷茫的桔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值