【ADC】SAR 型 ADC 和 ΔΣ 型 ADC 的基本运行原理

学习记录于 TI 高精度实验室



一、SAR 型 ADC 和 ΔΣ 型 ADC 架构对比

下图展示了每种拓扑结构的优点和缺点的基本总结。Delta Sigma 拓扑结构分为 DC 优化宽带宽 两类。之所以进行这种区分,是因为两种不同类型的 Delta Sigma 转换器的优点、缺点和使用注意事项非常不同。但是,数据手册中没有直接说明这种区别,因此需要通过查看内部数字滤波器类型和设备采样率来推断差异。

在这里插入图片描述

从应用的角度来看,宽带宽 Delta Sigma 的行为更接近 SAR 转换器。让我们仔细看看每个类别。首先,SAR 转换器最常用于捕获信号的瞬态值。此外,SAR 转换器还具有低延迟的优势。延迟是指从输入信号施加,到输出转换可用之间的延迟。

宽带 Delta Sigma 具有许多与 SAR 相似的特性,并且 Delta Sigma 通常具有噪声和分辨率优势。然而,宽带 Delta Sigma 的缺点是延迟比 SAR 更高。DC 优化的 Delta Sigma 转换器旨在测量非常低带宽的信号。这些 ADC 具有内部数字滤波器,可限制带宽并降低噪声。与宽带 Delta Sigma 转换器相比,此类转换器通常具有较低的延迟。

下面介绍 SAR 和 Delta Sigma 转换器中用于转换电压的基本内部机制。


二、SAR 型 ADC 的基本运行原理

下图显示了一个非常简单的 SAR 转换器框图。开关、RSH、CSH(下标 SH 指:采样和保持,Sample and Hold)组成采样保持电路,当开关闭合时,采样保持电路将充电至输入信号VIN,当开关断开时,电容上的电压将维持或保持在上一步采样的电压。

在这里插入图片描述

在保持电压的同时,转换器会将该电压转换为转换结果。转换分多个步骤进行,通过在每个步骤中调整 N 位 CDAC 的输出并将其与保持电压进行比较。事实上,SAR 的首字母缩略词代表逐次逼近寄存器(Successive Approximation Register),该名称指的是以连续逼近的方式调整 CDAC 以尝试匹配存储在采样和保持中的电压。寄存器一词指的是每个转换步骤的结果都存储在寄存器中。

那么 SAR ADC 是如何工作的呢?假设 SAR 就像一个平衡的重量秤,其中输入电压是一个未知的重量。在右侧,我们有几个经过校准的标准重物。这些重物以二进制的形式表示。由于我们有三个标准重物,这实际上代表了一个三位转换器。

在这里插入图片描述

进行测量的第一步是将未知重量施加到秤的左侧。这类似于 SAR ADC 的采样周期(也称为采集周期)。

在这里插入图片描述

接下来,我们开始添加经过校准的标准重物,从最重的开始添加。这类似于在转换中测试最高有效位,即 MSB。结果如下图所示,未知量比标准重物重。因此它被保留在秤上,并且 MSB 值被分配给二进制值。

在这里插入图片描述

下一步,我们添加 1/2 的配重,并注意到配重总和超过了未知值。最后一步,我们应用 1/4 的配重,并注意到秤已平衡。因此,1/4 的重量将保留在秤上。未知重量的二进制等价物为 1 0 1。

在这里插入图片描述

在这里插入图片描述

在上述例子中,采样和保持是天平的左侧。平衡点是比较器。校准后的标准重物是 N 位 CDAC 输出。

下图则是实际电路。前文提到,开关和 RC 电路构成了 ADC 的采样和保持电路。开关关闭且 ADC 采样的时间段称为 ADC 的采集周期。此周期的长度取决于转换器的采样率,并将在数据表中给出。例如,ADS 8860 的采集周期为 290 ns,采样率为每秒 1 兆样本。在采集期间,施加到输入端的电压需要对内部电容器 CSH 充电。

在这里插入图片描述

由于这是一个 RC 电路,因此电容器将以指数速率充电,如左图所示。为了获得最佳精度,采样阶段需要充电至输入电压的 1/2 LSB 范围内,并在此范围内保持、转换。1/2 LSB 是 ADC 无法检测到的最大误差,因为它小于 ADC 的分辨率。

采集周期结束后,ADC 开始转换采样信号。它通过调整 CDAC 来尝试匹配存储在采样和保持电容器 CSH 上的电压来实现这一点。每次调整 CDAC 时,转换结果中都会计算一位。因此,12 位转换器将调整 CDAC 12 次。每次逐次逼近的结果都存储在 N 位寄存器中。下图显示了五位转换器的转换周期。在本例中,存储在 CSH 上的模拟输入电压用绿色虚线表示。CDAC 输出用红线表示,并且始终从最高位(MSB)开始。

在这里插入图片描述

MSB 等于全量程范围的 1/2。随着逐步完成转换步骤,将所有不超过模拟输入的 DAC 输出保持为 1,其余为 0。图中,MSB 不超过模拟输入。因此保留此位并将其二进制值设置为 1。下一个位测试(MSB 的低 1 位)超出了模拟输入。因此,这个位被置 0。MSB - 2 位测试不超过模拟输入。因此,它二进制值为 1。最后两位都超过了模拟输入,二进制值为零。因此,本例的整体转换结果是 10100。

下图比较了左侧的 SAR 转换方法和右侧的 Delta Sigma 转换方法。SAR 采样和保持捕获信号的时间点以红点显示。

在这里插入图片描述

通常, SAR 转换也称为快照(snap-shot),因为采样保持电路在保持期间会冻结该电压值,类似于相机在快门按下时捕捉照片的方式。而 Delta Sigma 转换器在固定时间间隔内具有更多的平均效应。如上图右侧,每个绿色间隔表示 Delta Sigma 的转换周期。在转换周期结束时,转换结果被计算为整个间隔内信号的平均值。此平均值在此图中用红点表示。当然,说 Delta Sigma 只是在这个时间间隔内取平均值是一种过于简单的说法,方便理解而已。


三、ΔΣ 型 ADC 的基本运行原理

下图是一个非常简化的 Delta Sigma ADC 模型。关于 Delta Sigma,要记住的一个关键点是,输入电路(称为调制器,modulator)的采样率比输出数据速率快。在此示例中,调制器的采样率为每秒 1 兆样本。请注意,调制器时钟来自外部主时钟。在此示例中,外部主时钟(Master Clock)以 16.384 MHz 的速率运行,并被分频为调制器的 1 MHz 速率(Modulator Clock)。

在这里插入图片描述

调制器的转换结果由数字滤波器平均和滤波。输出数据速率始终低于调制器采样率。在此示例中,调制器以 1 兆赫兹采样。输出数据速率仅为 60 赫兹或每秒 60 个样本。因此,每天在转换器输出端读取的字,将 16,000 个输入样本平均在一起。调制器速率除以输出数据速率的比率称为过采样率或 OSR(Oversampling Ratio)。在此示例中,OSR 为 16,000。

上图的简化模型可以重新绘制成如下框图。从左侧开始,模拟输入信号被应用到调制器。调制器本质上就像一个 1 位转换器,将模拟输入转换为 PCM 信号(PCM, pulse code modulation,脉冲编码调制)。该 PCM 信号被应用到数字滤波器,该滤波器使用平均法将该比特流转换为更高分辨率的信号。抽取器消除了样本,因此输出数据速率是输入数据速率的一小部分。同样,如果对输入进行 16,000 次平均,则抽取器(Decimator)每 16,000 个输入样本将输出一个样本。

在这里插入图片描述

过采样率较大表明对信号进行了大量平均。**过采样可降低噪声并提高输出分辨率。**关于量化噪声和过采样,可以翻阅之前的文章,这里仅做简单概述。所有数据转换器都会将模拟输入信号转化为离散数字电平。此过程称为量化信号。相关误差称为量化误差。如果将交流正弦波应用到模拟数字转换器,则产生的数字化波形将出现误差,看起来像是锯齿波形随时间的变化。该锯齿波形的 FFT 将在很宽的频率范围内产生谐波。谐波将混叠回奈奎斯特频带。

在这里插入图片描述

结果是噪声基底看起来像白噪声。事实上,仅由量化噪声引起的信噪比 (SNR) 可以用以下公式从数学上预测:以分贝表示的 SNR 等于 6.02 乘以 n 加 1.76,其中 n 是转换器中的位数。注意,此公式仅适用于纯正弦波输入。这里要注意的重要一点是,理想模拟数字转换器的噪声基底仅由量化噪声决定

在这里插入图片描述

当以离散间隔对信号进行采样时,奈奎斯特-香农采样定理指出,采样频率 fs 必须大于输入信号最高频率分量的两倍,才能从采样版本重建原始信号。此最小采样率称为奈奎斯特率。施加超出奈奎斯特频率的输入信号将导致混叠频率折回到奈奎斯特频带。大多数 ADC 的采样频率接近奈奎斯特速率。具有 n 位分辨率的 ADC 的量化噪声均匀分布在 DC 和奈奎斯特频率之间的采样带宽上。

理想 ADC 的信噪比 (SNR) 由以下公式给出:以分贝表示的 SNR 等于 6.02 乘以 n 加 1.76,其中 n 是位数。右侧的过采样 FFT 图显示了过采样的效果。输入信号频率相同。但采样频率已增加过采样率 k。

在这里插入图片描述

过采样会显著增加带宽。因此,它会将量化噪声分散到更宽的带宽上。量化噪声功率保持不变。但现在,量化噪声分散到更高的采样带宽上,从 DC 到 k 倍 fs 除以 2。重要的是要意识到噪声功率总量保持不变,但噪声已分布在更宽的频率范围内,并且 FFT 中每个频率点的噪声水平已降低。

可以使用数字低通滤波器来消除高频噪声,同时保留感兴趣的输入频率信号。在上图中,过采样示例中的数字滤波器具有与奈奎斯特采样示例相同的带宽。数字滤波器保留少量噪声并抑制滤波器带宽之外的噪声。以这种方式,可以使用过采样来提高分辨率。过滤高频分量后,理想的 SNR 现在可以按照以下公式计算:SNR(以 db 为单位)等于 6.02 乘以 n 加上 1.76 加上 10 乘以 OSR 的对数,其中 OSR 是过采样率。10 乘以 OSR 的对数是过采样带来的噪声改善。

回到下图,它说明了内部 Delta Sigma 信号链。调制器的主要目的是将模拟输入转换为 PCM 输出。

在这里插入图片描述

脉冲编码调制是一种比特流,其平均值与模拟输入成比例。因此,对于小的模拟输入,PCM 比特流大部分为零。而对于大的模拟输入,比特流大部分为 1。在此示例中,调制器以每秒 1 兆样本的频率运行。因此,PCM 比特流也以该速率输出。

下图展示了一个脉冲编码调制示例。请注意,1 和 0 的出现与模拟输入有关。对于低模拟输入电平,PCM 位将主要为逻辑 0。而对于高模拟输入电平,PCM 位将主要为逻辑 1。

在这里插入图片描述

PCM 比特流的平均数是通过将 1 和 0 相加,然后除以平均位数而得出的。 如果我们考虑上一张图中的示例,则平均 16,000 位可产生一个输出样本。此外,数字输出比特流的频率是调制器运行的频率。因此,该比特流将以 1 兆赫的速率输出。

现在让我们仔细看看调制器如何将其模拟输入转换为 PCM 输出。下图显示了调制器内部的框图。这是一个控制系统样式图。

在这里插入图片描述

该控制环路的目的是使模拟输入(Input Signal)和数字输出(Dout)之间的误差(Error)尽可能小。为了将模拟输入与数字输出进行比较,输出通过一位数模转换器转换回模拟。这在反馈环路和输入误差求和块中显示。输入求和块(Σ)产生的误差(Error)被积分,这在许多控制系统中很常见。随着积分器(Integrator)的输出变大,比较器将使数字输出变为逻辑 1。此动作将导致误差(Error)变为负值。然后积分器输出(Integrator Out)将相应下降,低于 Vref,比较器使数字输出恢复为逻辑 0。

因此,闭环系统通过定期将比较器的输出转换为 1 或 0 来最小化误差。在一段时间后,对 1 和 0 进行平均,将得到模拟输入的数字等效值。实际上,这是一种简单的 Delta Sigma 调制器工作原理的描述方法。

下图 Delta Sigma 调制器框图显示了频域中的输入信号和噪声传递函数。分析传递函数,可以看到输出被反馈从输入信号中减去。图中,一位 DAC 增益为 1,求和块的输出为 VIN 减去 DOUT,然后将其乘以增益为 1/f 的积分器。最后,将量化噪声项添加到输出求和块,得到右下角所示方程。

在这里插入图片描述

仔细观察第二个方程,噪声乘以高通滤波器(HPF),输入电压乘以低通滤波器(LPF)。这个结果对于理解 Delta Sigma ADC 的工作原理具有非常重要的意义。首先,将输入信号施加到低通滤波器意味着所需信号将通过调制器,但较高频率的噪声信号将受到限制。接下来,将量化噪声与高通滤波器相乘可对噪声进行整形,它有效地将低频噪声降至最低,但不会衰减高频噪声。高频噪声通过数字滤波器应用于调制器输出来消除。此示例显示了具有一阶积分的调制器。一些 Delta Sigma 转换器将使用更高阶的积分。在下一张图片中,我们将了解更高阶的调制器如何影响 Delta Sigma 转换器的噪声整形。

下图显示了一阶、二阶和三阶调制器的频谱噪声密度,所有调制器的采样频率均为 fs。高阶调制器可用于在较低数据速率下获得更好的 SNR。这是因为高阶调制器将更多噪声移至高频并降低相关信号附近的量化噪声。

在这里插入图片描述

上图中,蓝色显示的三阶调制器是目标信号附近噪声最低的,因为该噪声已移至高频。其实,高频噪声并不重要,因为它将在下一阶段被低通数字滤波器滤除。在查看数字滤波器之前,先回顾一下调制器的输入和输出在时域和频域中的样子。

下图是时域和频域中调制器输出的信号。时域信号是 PCM 比特流。如果对该信号(Vpcm)取平均值,它将等于输入信号(Vin)的值。PCM 信号被施加到数字滤波器,该滤波器将执行平均功能,并且影响频域响应。

在这里插入图片描述

频域图显示了有效的噪声整形。注意,输入信号附近的噪声较低,而高频时的噪声较高。让我们再次查看框图。

在这里插入图片描述

上图中,可以看到调制器产生的 PCM 比特流被应用到数字滤波器和抽取器。数字滤波器将平均比特流,以有效地将模拟信号重建为高分辨率结果。注意,过采样过程会平均许多调制器样本,最后产生一个高分辨率输出样本。数字滤波器还用于过滤调制器输出的高频噪声。滤波器后面是抽取器,它根据过采样率(OSR)限制输出的样本数量。下面让我们更仔细地看看数字滤波器如何最大限度地降低调制器噪声。

下图显示了调制器输出端的量化噪声。注意,噪声在目标信号附近最小。添加数字滤波器将消除较高频率下的较大噪声。与整体噪声功率相比,通过数字滤波器的噪声最小。

在这里插入图片描述

此示例使用 sinc1 滤波器消除高频噪声。使用更高阶的滤波器将进一步降低噪声。下图显示一个 sinc2 滤波器。此滤波器比 sinc1 滤波器抑制更多的噪声,因为它具有更陡峭的通带过渡。

在这里插入图片描述

最后展示了一个 sinc3 滤波器。这个滤波器进一步降低了噪声。一般来说,选择更高阶的滤波器或降低截止频率是降低量化噪声的两种方法。

在这里插入图片描述

对于一些实际的直流优化 Delta Sigma 转换器,该滤波器的截止频率可能低至几赫兹。对于宽带 Delta Sigma 转换器,噪声可能高达数百千赫兹。如果比较低带宽和宽带 Delta Sigma 转换器之间的噪声规格,会发现带宽较宽的设备通常噪声较大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值