学习笔记:弱监督学习-valse青年会议

该博客深入讨论了弱监督学习的各种算法,包括半监督、标签噪声、多示例、迁移和PU学习等,探究它们之间的联系以及可能的统一框架。博主分析了弱监督学习与强监督学习的区别,强调了数据质量和深度学习的关系,并引入了相关关系与因果关系的概念。此外,还探讨了如何在数据域之间找到不变性元素来应对数据分布的变化。
摘要由CSDN通过智能技术生成

https://www.bilibili.com/video/BV1Xt4y127sX
嘉宾介绍: http://valser.org/article-357-1.html

6. 各类弱监督学习算法(比如半监督学习、标签噪声学习、多示例学习、迁移学习、PU学习、偏标记学习等),它们之间是否存在一定的联系?是否有可能在理论上构建统一的弱监督机器学习框架?

一、议题

  1. 弱监督学习和强监督学习相比,从学术研究的角度说,其根本难点和技术瓶颈在什么地方?

  2. 虽然弱监督学习这个概念已经被提出很久了,但工业界仍很少使用,为了提升性能,工业界往往更倾向于直接增加更多的训练数据。因此,弱监督学习从研究到落地的鸿沟主要在哪?

  3. 最近几年的弱监督学习算法大多致力于设计各种无偏或有偏的risk estimator。“无偏”和“有偏”各有什么好处和弊端?除了设计risk estimator,还有哪些大方向是值得进一步探寻的?

  4. 深度学习是一种data hungry的方法,如果想弱化深度神经网络训练对数据质量的依赖,我们可以从哪些方面努力?

  5. 对于弱监督学习,监督信息的强弱与算法性能的好坏在理论上是否存在精确或大致的函数关系?

  6. 各类弱监督学习算法(比如半监督学习、标签噪声学习、多示例学习、迁

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值