Pelee: A Real-Time Object Detection System on Mobile Devices
- (一)论文地址:
- (二)核心思想:
- (三)Two-Way Dense Layer:
- (四)Stem Block:
- (五)Dynamic number of channels in bottleneck layer:
- (六)Transition Layer without Compression:
- (七)Composite Function:
- (八)Feature Map Selection:
- (九)Residual Prediction Block:
- (十)Small Convolutional Kernel for Prediction:
- (十一)PeleeNet 的网络结构:
- (十二)实验结果:
(这篇论文的作者的思路是真滴很清晰)
(一)论文地址:
https://arxiv.org/abs/1804.06882
(二)核心思想:
作者在 2016 年提出了一个基于 DenseNet 的叫做 PeleeNet 的轻量级图像识别网络,实现了比 MobileNet 更高的准确率,并在此基础上提出了可以使用 PeleeNet 作为目标检测网络(论文中基于 SSD)的 Backbone,来解决大量使用 DW Conv 造成的缺乏特征有效利用的问题;
(三)Two-Way Dense Layer:
受到 GoogleNet 网络的启发,作者提出了可以在原来 dense layer 的基础上增加一条通道;
其中增加的第二层通道使用了 2 层 3×3 卷积,因此比原来