【论文阅读笔记】Pelee: A Real-Time Object Detection System on Mobile Devices

本文介绍了PeleeNet,一个基于DenseNet的轻量级图像识别网络,实现了比MobileNet更高的准确率,并被应用于目标检测。PeleeNet通过Two-Way Dense Layer、Stem Block等创新结构,提升性能并减少计算资源。此外,网络结构包括Dynamic number of channels、Transition Layer without Compression等,旨在提高运行速度和效率。实验结果显示,PeleeNet在保持高准确率的同时,大幅降低了计算消耗。
摘要由CSDN通过智能技术生成


(这篇论文的作者的思路是真滴很清晰)

(一)论文地址:

https://arxiv.org/abs/1804.06882

(二)核心思想:

作者在 2016 年提出了一个基于 DenseNet 的叫做 PeleeNet 的轻量级图像识别网络,实现了比 MobileNet 更高的准确率,并在此基础上提出了可以使用 PeleeNet 作为目标检测网络(论文中基于 SSD)的 Backbone,来解决大量使用 DW Conv 造成的缺乏特征有效利用的问题;

(三)Two-Way Dense Layer:

在这里插入图片描述

受到 GoogleNet 网络的启发,作者提出了可以在原来 dense layer 的基础上增加一条通道;

其中增加的第二层通道使用了 2 层 3×3 卷积,因此比原来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值