ATPG

overview

ATPG:Automatic Test Pattern Generation,表示自动生成测试向量(test pattern,有时也被称为test vectors),是在直到测试过程中,在PI(primary input)引脚上设置的一组0和1,以确定芯片是否正常工作。应用test pattern时,ATE(Auto Test Equipment)通过比较包含在test pattern中的fault-free输出(在test pattern生成时,同时生成了正确的输出)和ATE实际测试的输出值,判断电路是否有制造缺陷。

The ATPG Process

ATPG的目的是创建一组patterns, 来达到给定的测试覆盖率,测试覆盖率是pattern集实际检测到的故障占可测试性故障的百分比。

ATPG分为两步:1.生成patterns;2.执行故障仿真来确定patterns检测到哪些故障。Mentor Graphics ATPG 工具自动将这两步华为一个操作或ATPG process。ATPG process生成的patterns可以以tester指定的格式保存,使tester能够将pattern数据加载到芯片的扫描单元,然后正确应用patterns。

两种最典型的pattern生成方法使随机的和确定性的。除此之外,ATPG工具可以从外部集仿真故障patterns,并将检测故障patterns放置到测试集中。

Random Pattern Test Generation

ATPG工具在生成大量随机模式并仅识别检测故障的模式时使用随机模式测试生成。用在随机生成测试向量的故障仿真类型不能取代生成确定性测试性向量的类型,因为它不能识别冗余故障。它也不能为检测概率非常低的故障创建test patterns。然而,它可以用于由确定性测试生成终止的可测试故障。作为初始步骤,使用少量随机patterns可以提高ATPG性能。

Deterministic Pattern Test Generation

当ATPG工具为检测给定故障而创建test pattern时,使用生成确定性测试向量。该程序从故障列表选择一个故障,创建检测故障的pattern,故障防战pattern,检查确保生成的pattern能检测到故障。

更具体地说,工具给控制点分配一组值,使故障点与无故障状态具有相反的状态,所以,可以检测到故障值和无故障值之间的差异。工具必须找到一个方式来传递这个差异到一个点,在这个点可以观察故障效应。为了满足条件必须创建test pattern,测试生成过程决定如何在想要的gate上以最好的方式放置值。如果一个矛盾阻止了这些值在门上的放置,那么该工具在试图找到一个成功的test pattern时会细化这些决定。

如果工具排除了所有可能的选择,而没有找到成功的test pattern,将会在分类故障之前做进一步分析。故障要求该分析包括冗余,即ATPG-不可测试,以及可能被检测-不可测试的情况。通过确定性测试生成识别这些故障类型是重要的,关乎实现高的覆盖率。例如,如果工具证明了故障冗余,可能会标记该故障为不可测,否则,将划分为潜在可检测故障,计算测试覆盖率时归类为不可测试故障。

External Pattern Test Generation

当ATPG的初始源是一组预先存在的外部模式时,ATPG工具使用外部模式测试生成。工具分析外部pattern集来确定从活动故障列表中哪些pattern检测故障,然后将这些有些故障放进内部pattern集中。在这种情况下,“生成的patterns”包括来自以外部集的patterns,可以有效地实现最高的测试覆盖率。

<think>好的,我现在要回答用户关于ATPG在芯片测试中的应用的问题。首先,我需要理解用户的需求。用户可能对ATPG不太熟悉,所以需要先解释ATPG的基本概念,然后详细说明其应用场景和具体作用。 根据用户提供的引用内容,ATPGDFT中的关键技术,用于生成测试向量,检测芯片制造中的故障。我需要将这些信息整合起来,确保回答结构清晰,符合用户的要求:分点说明,使用中文,正确使用LaTeX格式,并在相关部分添加引用标识。 首先,我需要定义ATPG是什么。根据引用[^1][^2][^3],ATPG是自动生成测试向量的过程,这些测试向量用于在测试设备上验证芯片是否存在制造缺陷。接下来,应用场景部分需要涵盖制造测试、故障覆盖率优化、生产良率提升和设计验证等方面。每个点都要结合引用内容,例如引用提到ATE比较输出值,可以应用在制造测试环节。 然后,ATPG的具体作用部分需要分点说明故障检测机制、测试向量生成流程和与DFT的协同。引用[^4]提到测试生成解决的两个问题,可以在这里详细展开,比如如何生成有效的测试向量,如何定位故障。 在撰写过程中,要注意使用正确的LaTeX格式,例如变量或术语如$fault-free$需要用$包裹。同时,每个引用标识要自然地添加在相关句子的末尾,如[^1][^2]等。 最后,生成的相关问题需要与ATPG相关,可能涉及流程步骤、故障模型、与DFT的关系以及挑战等。这些问题应帮助用户进一步了解ATPG的不同方面。 现在需要检查是否符合所有系统级指令:行内数学表达式是否正确使用$...$,独立公式是否用$$...$$,LaTeX语法正确,使用中文,生成相关问题,引用标识正确添加。例如,检查是否有独立公式需要单独成段,但根据当前内容,可能暂时没有需要用到独立公式的地方,所以可能不需要。 确保回答结构清晰,分点明确,语言简洁,帮助用户逐步理解ATPG的应用。同时,参考提供的引用内容,避免引入外部信息,保证回答的真实性和可靠性。</think>自动测试模式生成(ATPG)是芯片测试中的核心环节,主要用于生成高效的测试向量,以检测制造过程中的物理缺陷。其应用可分为以下几个方面: --- ### 1. **ATPG 在芯片测试中的应用场景** - **制造测试** ATPG 生成的测试向量通过自动化测试设备(ATE)加载到芯片输入端,并捕获输出响应。通过对比实际输出与$fault-free$预期值,可快速识别短路、开路等物理故障[^3]。 - **故障覆盖率优化** ATPG 工具(如 TetraMAX、TestKompress)通过算法(如 D 算法、PODEM)生成覆盖目标故障的测试向量,确保单固定故障(Stuck-at Fault)覆盖率通常达到 95% 以上[^2]。 - **提升生产良率** 高效的测试向量可筛除有缺陷的芯片,降低测试成本。例如,针对扫描链(Scan Chain)设计的 ATPG 流程能显著减少测试时间。 - **设计验证辅助** 在芯片设计阶段,ATPG 生成的向量可用于仿真验证,提前发现设计缺陷与可测试性问题。 --- ### 2. **ATPG 的具体作用** - **故障检测机制** 假设某逻辑门存在固定为 0(Stuck-at-0)故障,ATPG 会生成输入组合使正确电路输出为 1,而故障电路输出为 0,从而暴露问题。 - **测试向量生成流程** $$ \text{故障列表 → 故障激活 → 故障传播 → 向量压缩} $$ 通过逻辑仿真和故障模拟,工具最终输出紧凑的测试集。 - **与 DFT 协同** ATPG 依赖扫描链插入、测试点添加等 DFT 技术,以实现对内部节点的可控性与可观测性[^2]。 --- ### 3. **ATPG 的挑战与趋势** - **功耗与测试时间** 测试过程中可能因瞬时高功耗导致芯片损坏,需通过向量排序或时钟门控技术优化[^3]。 - **新型故障模型** 随着工艺进步,需支持过渡延迟故障(Transition Delay Fault)、小延迟缺陷(Small Delay Defect)等复杂模型的测试生成。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值