Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

  1. 问题引入
  • 首个解决任意尺度超分问题的模型,借鉴了meta-learning的思想;
  • weight prediction strategy(meta-learning):神经网络的权重是由另一个神经网络预测的,而不是通过从训练数据集中学习的,原来的模型需要为每一个scale训练一组参数,现在直接用一个模型来将不同的scale的模型参数储存起来;
  1. 方法
  • 模型包含两个部分:Feature learning module提取LR的特征,还有一个Meta-Upscale Module来以任意尺度upscale特征图;
  • Feature learning module:使用RDN;
  • 有高分图像 I H R I^{HR} IHR,通过降采样得到对应的低分图像 I L R I^{LR} ILR F L R F^{LR} FLR是提取到的特征,假设scale是 r r r,包含三个部分,分别是Location Projection,Weight Prediction,Feature Mapping,模型的输出形状是 ( i n C , o u t C , k , k (inC,outC,k,k (inC,outC,k,k,其中 i n C inC inC是feature vector的长度, o u t C outC outC是3表示rgb三个通道,模型由全连接层和激活层组成;
  • Location Projection:对于所求高分图像上每一个像素的像素坐标 ( i , j ) (i,j) (i,j),寻找其在低分图像上对应的坐标 ( i ′ , j ′ ) = T ( i , j ) = ( ⌊ i r ⌋ , ⌊ j r ⌋ ) (i',j')=T(i,j)=(\lfloor\frac{i}{r}\rfloor,\lfloor\frac{j}{r}\rfloor) (i,j)=T(i,j)=(⌊ri,rj⌋)
  • Weight Prediction:用一个网络来预测filter的权重 W ( i , j ) = ψ ( v i j ; θ ) W(i,j) = \psi(v_{ij};\theta) W(i,j)=ψ(vij;θ),其中 W i j W_{ij} Wij是对应于SR上像素点 ( i , j ) (i,j) (i,j)处filter的权重, v i j = ( i r − ⌊ i r ⌋ , j r − ⌊ j r ⌋ , 1 r ) v_{ij}=(\frac{i}{r} - \lfloor\frac{i}{r}\rfloor,\frac{j}{r}-\lfloor\frac{j}{r}\rfloor,\frac{1}{r}) vij=(riri,rjrj,r1) θ \theta θ是模型的权重;
  • feature mapping:对于每一个SR的单个像素点 ( i , j ) (i,j) (i,j),由Location Projection步骤得到的 ( i ′ , j ′ ) (i',j') (i,j)取对应的feature map上面的feature vector,之后还由Weight Prediction取得相应的weight,之后获得像素值的操作是将两者进行矩阵乘;
    在这里插入图片描述
  1. 实验
  • 数据集:DIV2K训练,评测使用Set14,B100,Manga109,DIV2K
  • 22
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值